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ISSUES IN FREQUENCY DOMAIN FEEDBACK CONTROL THEORY

James Scott Freudenberg, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1985

The purpose of this thesis is to examine several issues in the

frequency domain theory of feedback control systems. Properties of both

single loop and multiple loop systems are considered. For single loop

systems the limitations on feedback properties imposed by right half plane

poles and zeros of the plant are considered. The relation between open and

closed loop properties of multiple loop systems is studied. A great deal of

attention is given to how complex analyticity of matrix transfer functions

limits feedback properties of multiple loop systems. An integral constraint

generalizing Bode's gain-phase relation is presented. ,, - -
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CHAPTER 1

INTRODUCTION

Classical feedback theory has proven to be successful 4.n the

design of singie-input single-output feedback systems. Recent years have

seen a renewed effort to generalize this theory to multiple-input multiple-

output systems. The purpose of this thesis is to attempt such generaliza-

tions for some selected topics from classical theory. Following are a brief

summary of each chapter and a description of how the chapters relate to each

other.

The purpose of Chapter 2 is to review the concepts from classical

theory for which generalizations will be pursued in later chapters. The

g importance of each concept to the process of classical design is discussed,

thus motivating work on extensions. Three concepts in particular are

stressed.

First is the fact that certain closed loop transfer functions

directly express the quality of a feedback design. Thus it is natural to

"" state design specifications in terms of these transfer functions. Despite

this fact, classical methods have focussed on the manipulation of gain and

phase of the open loop transfer function. That this approach is successful

JN is due, at least in part, to a second important characteristic of classical

methods: that the relation between open and closea loop system properties

is well-understood. Thus, the quality of a design may be evaluated from

knowledge of the open loop transfer function; similarly, design specifica-

tions may be stated in terms of this function.

7 .. . . . .- .... . . . " . .. . . .
• -. + * + .+ ," -. + ; . . . + "' " "+ ' . ' ' '
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A third important idea from classical theory is that there exist

hard limitations on the ability of a linear time-invariant system to

achieve design specifications. The limitations of particular interest in

this thesis are those known as the Bode integral relations and Bode gain- -

phase relations. These limitations manifest themselves as tradeoffs which

must be performed among desirable system properties in different frequency

ranges. Mathematically, the tradeoffs are due to the fact that transfer

functions must be analytic in the complex frequency variable. This

requirement imposes a great deal of structure upon transfer functions; it

is this structure that allows one to prove that not all design goals are

achievable.

The Bode relations and their interpretation in terms of design

tradeoffs provide the scientific foundation for classical feedback theory.
7.

One way of viewing classical design is as a systematic process for exploring

the set of designs possible given the various limitations due to the open

loop plant and the conflicts among design specifications. This process

involves a certain amount of trial and error; however, various rules of

thumb are available to guide the designer. These are based upon knowledge

of the relation between open and closed loop system properties and the

unalterable properties of systems given by the Bode integral equations.

Examples of rules of thumb are "high loop gain yields good disturbance

rejection" and "loop roll-off near crossover should be no greater than

20 db/decade." Now, it is granted that such rules of thumb will generally

be insufficient to carry out a complete system design. It appears their

true significance is that they allow the designer to rapidly get in the

:Z ,: . .. . . . • - • . ..... - -- . - . -
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g vicinity of a satisfactory design, after which a more detailed analysis must

be made. For this reason, generalization of classical rules of thumb to

multiple loop systems appears to be a worthy endeavor. Since the classical

rules of thumb discussed above could each be given a theoretical justifica-

tion, a first step will be to develop the necessary theory for multiple

loop systems.

One advantage of working with open loop quantities is that various

design limitations due to properties of the given plant are seen directly.

Whether open or closed loop transfer functions are considered, however, it

is important to express the design limitations in terms of the transfer

*. functions evaluated along the imaginary axis, for this is where design

specifications are imposed. Certain design limitations, namely those due

S to open right half plane poles and zeros of the plant, have commonly been

.. considered in terms of their effect upon the gain and phase of the open

loop transfer function along the imaginary axis. Recent years have seen

0 renewed interest in expressing these limitations in terms of closed loop

transfer functions. Existing results, however, have only been stated in

*terms of these functions evaluated at isolated points in the open right

half plane. Thus, in Chapter 3, equivalent statements of these constraints

are given in terms of closed loop properties along the imaginary axis. These

statements, which are very much in the spirit of the Bode integral relations,

show that tradeoffs among system properties in different frequency ranges

must be performed.

Although insight into design limitations may be gained from the

integral relations, they also show that direct design in terms of closed
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loop transfer functions is complicated by the necessity of satisfying a

fairly complicated set of constraints. This observation suggests that a

criterion of merit for evaluating proposed design methods is the amount of

insight provided into such constraints. Moreover, the ability to effectively

perform the associated tradeoffs among design goals should also be present in

any design technique. The purpose of Chapter 4 is to discuss the relative

merits of design methods employing open loop transfer functions versus those

employing closed loop transfer functions. In particular, it is conjectured

that open loop based techniques might have certain advantages in dealing with

limitations imposed by properties of the plant. It should be stressed, however,

that the purpose of the discussion is not to reach any conclusive statements

regarding the usefulness of any particular method. Rather, it is felt that a

detailed examination of the issues such conjectures raise may be of importance ,

in the development of design techniques. In the course of the discussion a

class of recently proposed design methods, the Hz-optimization techniques,

are analyzed and found, for at least some problem statements, to be

equivalent in many ways to other closed loop based methods. It is seen that

the integral constraints developed in Chapter 3 are implicitly present in

these design methods.

To summarize, Chapter 2 contains a review of known classical results

and points out some highlights of the classical theory and methods. In

Chapter 3,new results concerning classical design problems are developed.

These results are applied, in Chapter 4, to discuss properties of various

design schemes. With this background, sufficient motivation is provided for

4 ., ? ? :':''.? ° i : i- : , " i- .-
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developing extensions of the concepts described in Chapter 2 to multiple

loop feedback systems.

A discussion of some previously obtained extensions of classical

concepts is contained in Chapter 5. (The discussion, however, is limited to -

include only those extensions which are directly relevant to the purposes

of this thesis.) As many authors have discussed, the fact that certain

closed loop transfer functions directly express the quality of a feedback

design holds for multiple loop as well as single loop systems. (One

difference is that some nonstandard functions must be considered when

multiple loop phenomena having no single loop analogue are encountered;

see Chapter 5 for references to these results.) The focus of this thesis

is on the other two concepts highlighted in Chapter 2, since it appears more

work is needed in these areas. These two concepts are the relation of open

to closed loop system properties and the tradeoffs between system properties - -

in different frequency ranges imposed by the Bode integrals. It is shown

in Chapter 5 that many previous extensions of these concepts hold only in

special cases, for which the multiple loop design problem essentially

* reduces to a single loop problem. This reduction occurs when system

* properties and design goals are essentially the same in all loops of the

system. Problem formulations are then given in which this simplifying

assumption is not satisfied. In this way Chapter 5 also describes the

class of design problems for which theory is to be developed in later

chapters.

As stated previously, classical design emphoeized shaping the

gain and phase of the open loop transfer function. Although the

generalization of gain to multiple loop systems is fairly straightforward,

~~~~:: ~~~.K§K:-K:~~~~~:}:7-i~~1 1KK-.-&j~:--Lui,~.~ . .... **
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the generalization of phase is not. In addition, multiple loop systems

exhibit directionality, a property with no scalar analogue. The purpose

of Chapter 6 is to discuss what role, if any, phase could play in multiple

loop systems, and the relation of both gain and phase with the direction-

ality properties of these systems. Emphasis in Chapter 6 is placed upon

physical interpretations of the various parameters.

Another way of viewing the gain and phase of a scalar transfer

function is as a set of coordinates completely specifying the value of

the function. In Chapter 7 sets of coordinates for matrix transfer

functions are discussed. These include the singular values and the measures

of phase difference discussed in Chapter 6. Some relations between these

coordinates and feedback properties are developed.

In Chapter 8 extensions of one of the important classical concepts

are presented. This concept is that rules of thumb are available for

relating open loop to closed loop properties of feedback systems. The

novel results show that rules of thumb may be obtained for systems with

both large and small levels of gain in different directions at the same

frequency. As might be expected, feedback properties are a function of a

certain measure of the coupling between high and low gain portions of Ste

the system. In addition, frequency regions analogous to gain crossover

frequency in a single loop system are shown to exist.

For two-input two-output systems the results of Chapter 8 are

expressed in the coordinates discussed in Chapters 6 and 7. Two examples

are then presented. One is an example of a physical system. This example

verifies that the results of Chapter 8 are indeed useful in analyzing

systems of engineering interest.

-- --
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The other example in Chapter 8 was specially constructed to

reveal some behavior in multiple loop systems which appears to have no

analogue in scalar systems. In particular, the limitations imposed by the

Bode gain-phase relations appear to be violated. It is postulated that

this behavior is due to a helpful interaction between the two loops of

the system. The fact that no theoretical foundation for understanding Ii
such phenomena exists provides motivation for the major work of this thesis,

which is to develop such a foundation.

Theoretical understanding of multiple loop systems is the topic I
of Chapters 9-12. Chapter 9 initiates this work by first analyzing how

analytic function theory was used to derive constraints on scalar transfer

functions. Although the Bode integral relations expressed these constraints

in the form most useful to engineers, the information is also contained in

the more familiar (to mathematicians) Cauchy-Riemann equations and Cauchy p
Integral Theorem. All these formulas show that the two coordinates needed

.° to describe the value of a transfer function provide essentially only

one degree of freedom to be manipulated in design.

Obviously in multiple loop systems the same equations may be -

applied to each element of a matrix transfer function written in standard

coordinates. Unfortunately, these coordinates do not generally convey

useful information about the quality of a feedback design. As shown in

- Chapters 6-8, other coordinates exist which do contain such information.

It is not clear, however, how the constraints imposed by analyticity

manifest themselves in these new coordinates. Thus it is necessary to

study how the basic equations of complex variable theory transform under

-'.'

i:." - .,:- -'' -'. .-.i'i i ,. :--".-.:'i . , -. .; i- i./ . ..' .? .; . " .• ". ."-. ..; . ... -
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changes of coordinates on matrix transfer functions. After this is under-

stood, it will then be possible to express the Bode gain-phase relations

in useful nonstandard coordinates.

Since a simple characterization of analyticity is given by

the Cauchy-Riemann partial differential equations, study of these is

undertaken first. It is shown, using differential equations, that knowledge

of a singular value gives information about some property of the associated

pair of singular vectors. The fact that the exact nature of this information

is unclear motivates a study of how singular vectors change with frequency.

In Chapter 9 two special classes of singular vectors are singled

out for study. The first class consists of those vectors for which the

singular subspaces are constant, thus allowing scalar ideas about the

relation of gain and phase to be generalized directly. The second class

consists of so-called "minimum-energy" singular vectors. Thought experiments

are discussed which suggest that these singular vectors exhibit motion only

of the singular subspaces; such motion, in turn, is responsible for system

behavior having no analogue in single loop systems.

Although differential equations describing the motion of singular

vectors are developed in Chapter 9, the relation of a singular vector pair

to its associated singular value remains difficult to analyze. To alleviate

this difficulty, in Chapter 10 a study of the space in which singular vectors j
lie is undertaken. By showing that this space has the structure of a circle

bundle over complex projective space, it is possible to separate the

direction of a singular vector (i.e., the one-dimensional subspace in which

it lies) from any given measure of its phase. Moreover, questions concerning

* . .--. . . . . .... V .-
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the existence of a general definition of phase may be settled. It is shown

that a measure of phase difference between a pair of left and right singular

vectors may be obtained from measures of the phase of each member of the

pair. -

In Chapter 11 the geometric framework developed in Chapter 10 for

separating phase-like properties of singular vectors from directionality

properties is used to analyze the differential equations derived in

V Chapter 9. It is shown that the tangent space to the unit sphere in C"

may be decomposed into the direct sum of two spaces. Each of these in turn

corresponds to one of the two classes of singular vectors singled out in

K Chapter 9 for further study. This decomposition of the tangent space

satisfies the definition of a connection in a principal fiber bundle.

Now, although this particular description of a connection arises

naturally from the problem under study, it still does not seem to provide

much insight. To remedy this, an equivalent description of the connection

is developed in Chapter 11. This description does provide insight into the

distinction between changes in the singular subspaces and changes in the

phase difference between a pair of singular vectors. In addition, it is

much more useful in performing computations.

One result of Chapter 11 is the derivation of some differentiEl.

equations, involving a singular value and a measure of phase difference

between its associated pair of singular vectors, which are analogous to the

V-
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familiar Cauchy-Riemann equations. It turns out, moreover, that the functions

of interest generally do not satisfy these familar equations. The amount by

which the Cauchy-Riemann equations fail to be satisfied may be quantified

by the difference between two connection one-forms evaluated on tangent

vectors to the paths through complex projective space which the singular

vectors are constrained to traverse. By assigning coordinates to projective

space, considerable insight is gained into the effects of nonconstant

singular subspaces.

The final theoretical results of this thesis are contained in

Chapter 12. In this chapter, the generalized Cauchy-Riemann equations

developed in Chapters 9-11 are used in conjunction with Stokes' Theorem to

derive a generalization of the Bode gain-phase relations to multiple-loop

jAe
systems. The generalization is applicable to functions of the form oe

where o is a singular value and A6 is an appropriate measure of phase

difference between the associated pair of singular vectors.

The generalized gain-phase relations show how the value of Ae(jW)

may be expressed as the sum of two integrals. The first integral is a

function of the rate at which the singular value rolls off in the vicinity

of s - jw, and is entirely analogous to the classical Bode integral relating

the gain and phase of a single loop transfer function. The second integral,

on the other hand, has no analogue in single loop systems. Interpretations

of this term are also presented. These stress that the discrepancy between

the actual value of A9(jw) and the value of the first integral is due to

phase lead or lag being trasferred among loops of the system.

w% •

°..
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Finally, in Chapter 13 the new integral relation developed in

Chapter 12 is applied to analyze the example presented in Section 8.4. It

was pointed out in the original discussion of this example that its

anomalous behavior appeared to be due to a transfer of phase lead from

the first to the second loop of the system. The new gain-phase relation

allows this conjecture to be, if not verified, at least made quite

plausible.

Concluding remarks are contained in Chapter 14.

a

p

'.
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CHAPTER 2

REVIEW OF CLASSICAL FEEDBACK CONCEPTS

2.1. Introduction and Motivation

The purpose of this chapter is to review classical feedback theory

for linear time-invariant single-input single-output (SISO) control systems.

The review is not intended to be complete. Rather some important concepts

will be highlighted which have proved particularly useful in ascertaining

design limitations. Extension of these concepts to multiple-input multiple-

output (MIMO) systems will be pursued in later chapters of this thesis.

It should be emphasized that the purpose of this chapter is not to

present new results. (New results in single loop feedback theory are given

in Chapter 3.) Rather, in this chapter interpretations of existing results

are presented, and a paradigm is seen to emerge. Three features of classical

'* -. design are discussed in this chapter; a summary of these features was

presented in Chapter 1. Additional discussion of classical design techniques

- -." is contained in Chapter 4.

*- One reason to carefully reexamine classical theory before attempt-

ing MIMO extensions is to insure that one is actually working with the key

concepts, rather than concepts whose seeming importance is only illusory.

To illustrate, recall that attempts to generalize the notion of gain and

phase margins to MIMO systems met with difficulty. Extending the notion of

the closest distance from the Nyquist locus to the critical point proved to

be straightforward, however. Further examination, (e.g., [1, p. 1182]),

showed that in fact gain and phase margins were only useful in assessing

worst case robustness insofar as they approximated this closest distance.

K..,.:- ~ z, i .2 ~
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Thus the difficulty in discovering MIMO gain and phase margins useful in

worst case analysis is perhaps not surprising; it might be considered a

fortuitous accident that these margins are even useful in SISO systems.

Another reason to discuss SISO systems is to point out certain

properties of these systems which imposed limitations and tradeoffs in

design. Later these properties will be examined in the context of MIMO

systems to see if these limitations are still present, or whether the

additional degrees of freedom available in MIMO design allow iem to be

overcome or at least allow tradeoffs to be made in a different manner.

2.2. Basic Equations for Feedback Systems

Consider a linear time-invariant single-input single-output

- feedback system as shown in Figure 2.1.

Here P(s) and F(s) are the transfer functions of the plant model

I and feedback compensator, respectively. The signal r(s) is the reference

input, y(s) the system output, d(s) a disturbance input, and n(s) is sensor

noise.

The output of the system is given by

(2.1)l
y(s) (s) + Yd(S) + n(S) (2.1)

. (S) = [1 + P(s)F(s)]- I P(s)r(s) (2.2"
-• -l

Y =(S) [1 + P(s)F(s)] d(s) (2.3)

y (s) = -(1 + P(s)F(s)]P(s)F(s)n(s) (2.4)
n9
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Figure 2.1. Feedback configuration.
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m Define the open loop transfer function

L(s) P(s)F(s) (2.5)

the system sensitivity function "

S(s) (1 + L(s)] (2.6) 'I.'-.

- and the complementary sensitivity function (2]

T(s) [1 + L(s)] L(s) (2.7)
, M.

Assume that L(s) is free of unstable hidden modes. Then the

feedback system is stable if S(s) is bounded in the closed right half plane.

* Note this assumption on L(s) implies that the closed right half plane poles

and zeros of the plant and compensator must appear with at least the same

.' multiplicity as that in L(s).

From (2.3) and (2.6) it follows that the response of the system to

* disturbance inputs is determined by the magnitude of the sensitivity function,

IS(jw)I. Similarly, from (2.4) and (2.7) it follows that the response of

the system to sensor noise is determined by the magnitude of the complementary

sensitivity function, IT(jw)I. Therefore, the response of the system to

disturbances of frequency w can be made small by requiring that jS(jW)i--l;

the response to sensor noise can be made small by requiring that IT(jw)l«<l.

The benefits of feedback in reducing the effects of uncertainty

in the plant model upon the system output can be assessed from [3]

E (s) S'(s)E (s) (2.8)
c 0

S'(s) 1 [1 +P'(s)F(s)]I (2.9)

---------------------------------J
J LLi ' 

' ' -. . ,- ..... . . . * *
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where P'(s) [1 + A(s)]P(s) is the true plant. The signals E cs) and E Os)

are the deviations in the outputs of nominally equivalent closed and open

loop systems caused by the model error A(s). If at some frequency

fs'(j < 1 (2.10)

then the closed loop system is said to possess the sensitivity reduction

property at that frequency. Condition (2.10) is difficult to design for

since it depends on the true unknown plant rather than the model.

Nonetheless, at frequencies for which A(jw)I<l,it is possible [4] to

insure that (2.10) holds by requiring that Is(Jw)I<<l. Thus it is

-'*" possible to reduce the effects of sufficiently small levels of plant

uncertainty by requiring the nominal sensitivity function to have small

magnitude.

The sensitivity and complementary sensitivity functions are also

related to the stability robustness properties of the system (see, e.g., [5],

Table 1). In particular, suppose that the true plant is given, as above, by

P'(s) = [1 + A(s)]P(s) (2.11)

Assume that

-i) P'(s) and P(s) have the same number of unstable poles and

(ii) A(s) is otherwise arbitrary subject to a frequency dependent _

magnitude bound:

I A(jW) < m ) VW (2.12)

Then if the nominal system (-I(s) 0) is stable, the true system is

guaranteed to be stable if [41

- .- . -. .a . '

'~~~~~~..?- i. ." .'. . ... . . . .... -1 : . . :-::'.. .. '.'-..-i.-.i , ..... .. . *, . a.- , ,
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MVw (2.13)
IT(jw)j

This bound requires that IT(jw) I must be small at frequencies for which

uncertainty may be large.

2.3. Closed Loop Transfer Functions and Feedback Properties

The preceding discussion has highlighted one important aspect of

classical feedback theory. Properties of feedback systems which are

important in design are expressed directly by various closed loop transfer

functions. This fact motivates the statement of design specifications in

terms of frequency dependent bounds on IS(jw)! and IT(Jw)l:

IT(ijw) < MT(w) VW (2.15)

S

These bounds will generally be a function of the relative levels of

- disturbance inputs, sensor noise, and plant uncertainty. Note, however,

that both IS(jw)l and IT(jw)J cannot be small at the same frequency.

This fact follows from the identity

S(jw) + T(jw) 1 (2.16)

Thus there exists, at each frequency, an algebraic tradeoff between the .

system properties of sensitivity reduction and disturbance rejection (which

*are achieved by requiring 1S(jw),<<) and the properties of stability robust-

ness and sensor noise rejection (achieved by requiring ,T(j,)- I  .).

S. .!
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*In engineering applications it commonly happens that levels of

uncertainty and sensor noise become large at high frequencies. Disturbance

rejection and nominal sensitivity reduction are generally desired over a

low frequency band containing the frequency range of the reference input.

Thus the algebraic tradeoff imposed by (2.16) is typically performed by

requiring MS (w) to be small at low frequencies and M.(W) to be small at

high frequencies. In addition neither MS (w) nor M(w) should be

excessively large at any frequency.

2.4. Design Limitations Imposed by Bode's Integral Theorem

There exist tradeoffs in feedback design in addition to those at

each frequency imposed by (2.16). These tradeoffs must be performed

between system properties in different frequency ranges, and are a

consequence of physical realizability. In order to be physically realizable,

a function of the complex frequency variable "s" must in fact be

analytic in this variable; this follows from well-known properties of the

Laplace transform. Thus, complex variable theory can be applied to study

properties of feedback systems expressed by both open and closed loop

transfer functions. One such application of the theory is the Nyquist

stability criterion (6]. The use of complex variable theory to study

limitations in the design of feedback systems was pioneered by Bode [71

after some early work by Norbert Wiener and students [8]. Interpretations

of Bode's work in the context of control design were emphasized by Horowitz -;

.'.'i"[ 9 1

'[9].
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The tradeoffs analyzed by Bode are quantified by certain integral

relations which must be satisfied by transfer functions of linear time

invariant systems. One such tradeoff occurs among levels of sensitivity

*reduction in different frequency ranges. The following theorem was first

proven by Bode; an extension to open loop unstable systems is presented in

" Chapter 3 of this thesis.

Theorem 2.1 (Bode Integral Theorem [7]): Assume that the open loop transfer

function L(s) possesses no poles in the open right half plane. In addition,

assume that

lim sup RIL(s)j = 0 . (2.17)
R-m-Is I_ R

Re[s] _ 0

Then,if the closed loop system is stable,the sensitivity function must

.* satisfy

0 f ogIS~jw)I dw .(2.18)

0

For a complete discussion of the design implications of Theorem 2.1,

see Chapter 3. For now, note that (2.18) shows that on a plot of

.. logIS(jw) I vs w the sensitivity reduction area (IS(jw)l<l) must equal the

area of sensitivity increase (IS(jw)1>1) in units of decibels x (radians/sec).

Thus, the desirability of sensitivity reduction over, say, a low frequency

range must be traded off against possibly undesirable effects of sensitivity

increase at other frequencies. When realistic bandwidth constraints are

imposed it can be shown (Chapter 3) that this tradeoff must take place

primarily over a low frequency interval, despite the fact that the range

of integration in (2.18) is infinite.

r .- ~~~~~~~~~..-..+..... ... ...... .... ... . ........ ,. . . . .... ,,.....,
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Theorem 2.1 illustrates another important theme in classical

feedback theory. This theme is that there exist hard limitations on the

achievable performance of any linear time-invariant feedback system. In the

present case, (2.18) shows that if L(s) must satisfy (2.17),then not all

functions S(s) can be realized as the sensitivity function of the closed

loop system. In Chapter 3 it is shown that relations similar to (2.18)

must be satisfied by S(s) when the plant is nonminimum phase and by T(s)

when the plant is open loop unstable. In all these cases fixed properties ,

of the open loop system restrict the achievable properties of the closed

loop system. This may be one reason why classical design methods focussed

upon shaping the gain and phase of the open loop transfer function despite

the fact that it is the closed loop transfer function which directly

expresses the quality of a feedback design. (Further discussion of this

point is given by Horowitz [9, Sec. 6.13]. An extensive discussion is also

presented in Chapter 4 of this thesis.)

2.5. Relations Between Open and Closed Loop System Properties

In any case, certainly one reason why classical loop shaping is

successful is the fact that the relation between gain and phase of L(jw) and

closed loop properties is well understood.

From (2.6) and (2.7) the following relations between levels of

open loop gain and closed loop properties can be deduced:

',° "1
'oo°

• ° °o-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ,



21

Is(W) <<l

IL(j) I>>l and (2.19)

IT(jw) I f-'

and

IT(jw) I1 <<l

IL(j) <<l and (2.20)

Is(jw) Il1

At frequencies for which the loop gain is approximately unity, closed loop

properties can be approximated from knowledge of open loop phase:

IL(jw)1l 1 IsOj)l>>1

and - and (2.21)

XL(jw)f - 1800 IT(jw)l>>l

Approximations (2.19)-(2.21) yield well-known rules of thumb for

classical design. Large loop gain is required for good sensitivity reduction

and disturbance rejection properties, while small loop gain is required for

sensor noise rejection and stability robustness. At frequencies for which

SL(jw) l l (e.g., gain crossover frequency,at which IL(jw)l i), the phase of

* the system should remain bounded sufficiently far away from t1800 to provide

an adequate stability margin and to prevent amplifying both disturbance

*f inputs and sensor noise.

Recall the discussion of the sensitivity and complementary sensitiv-

ity specifications (2.14) and (2.15). From that description of typical closed

" loop design specifications and the approximations (2.19)-(2.21) it follows that

corresponding open loop gain and phase design specifications might appear as in

, Figure 2.2. These specifications reflect the fact that loop gains are desired

.. , .*.- .'... .*-, * *. *... • .. . ... .. . ." , .. . ."" .
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Figure 2.2. Gain and phase specifications.
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to be high at low frequencies for good system performance and are required to

be small at high frequencies in order to maintain stability robustness. At

intermediate frequencies the phase of the system must be bounded away from

±1800. To maintain good sensitivity and disturbance rejection properties over

as wide a frequency range as possible, wL should be close to w..

2.6. Bode Gain-Phase Relations

The ability to achieve the specification just described is

constrained by the fact that gain and phase cannot be assigned independently

in design. The precise relation between gain and phase was stated in its

most useful form by Bode (7]. Again, Horowitz (9] has discussed the

implications for control design. A good recent discussion is given by

Doyle and Stein [4].

Theorem 2.2 (Bode Gain-Phase Relation): Assume that L(s) has no poles or

Uzeros in the closed right half plane; in addition, assume that L(s) has

a power series expansion about the point at :

L(s) = i - (2.22)

i-0 s

Define

logGW/W (2.23)
0 -

At each point s =4 w the following integral relation holds:

iL(jW ) d log!L('w) flog coth !''I dv (2.24)
0 -L(oog2 dv 2

U *

..... ... : ,_ '. " .. .. .' .. . . . ." , ' --..- ..'
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UThe above theorem gives conditions which, if satisfied, show that

knowledge of IL(jw)I Vw (which implies knowledge of d lo4L)I) completelydv

determines 4L(jw). Thus, although two parameters or coordinates are needed

to specify the value of a transfer function, for stable minimum phase systems

there exists only one degree of freedom available to the designer. The

presence of the weighting function (Figure 2.3)
J(+ W0

log coth 2 = log - (2.25)

shows, however, that 4L(jw ) depends primarily on values of d logIL(jw)j
0 dv

at frequencies near w.
0

The implication of Theorem 2.2 for the design specification of

Figure 2.2 is as follows. If the gain is decreasing at 20N db/decade at

frequencies near w , then the phase is approximately -90N*. Thus, in0

Figure 2.2 wL must be sufficiently less than wH so that the rate of gain
Lo H

decrease near gain crossover frequency is not much more than 20 db/decade,

yielding a phase lag of not much more than -90. Low frequency sensitivity

reduction must be traded off against a sufficient stability margin near •

crossover. This is another example of a tradeoff which must be performed

among system properties in different frequency ranges. Again, the tradeoff

is due to the analyticity of transfer functions of physical systems.

One difference between this tradeoff and that discussed in Section 2.4 is

that the latter tradeoff was expressed in terms of a closed rather than an

open loop transfer function.
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Figure 2.3. Weighting function in Bode gain-phase relation.
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2.7. Summary

To summarize this chapter, several key concepts from classical

feedback theory have been discussed. First, feedback properties can be

assessed from various closed loop transfer functions. Second, despite

this fact, classical designfocussed on open loop quantities; this procedure

was successful since the approximate relation between open and closed loop

quantities is well understood. Third, properties of linear time-invariant

systems constrain the class of achievable design specifications, whether

these are imposed upon open or closed loop quantities, and impose tradeoffs

in feedback design. Recognition of the existence of these tradeoffs, and

, the ability to deal insightfully with them in design, are crucial to the

success of classical feedback theory. Tradeoffs can be seen to exist from

classical Nyquist/Bode analysis techniques. Well-known rules of thumb

associated with classical lead and lag compensation schemes show that trade-

offs cannot be avoided. However, these techniques are useful in exploring

the set of possible designs and achieving a satisfactory compromise among

design goals.

In the next chapter some new results concerning tradeoffs in

SISO systems which are open loop unstable and/or nonminimum phase are

presented.

[ ' "'
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CHAPTER 3

RIGHT HALF PLANE POLES AND ZEROS AND DESIGN
TRADEOFFS IN FEEDBACK SYSTEMS

3.1. Introduction

A central issue in the design of feedback systems is that of

sensitivity of the closed loop system to uncertainty in the plant model

and to disturbance inputs. The system sensitivity function, denoted S(s),

has played a key role in the classical design and theory of feedback systems;

its importance has been discussed by many authors (2-4,7,9-19]. Briefly, the

magnitude of the sensitivity function evaluated along the jw-axis directly

quantifies such feedback properties as output disturbance rejection and

sensitivity to small parameter variations.

Another function which expresses important feedback properties is

the complementary sensitivity function [21, defined as T(s) = 1-S(s). The

magnitude of T(s) along the jw-axis quantifies the response of the feedback

system to sensor noise. In addition, this quantity has recently been used

as a measure of the stability margin [4,11-14,20].

The importance of iT(jw)l and IS(jw)l to design properties motivates

the expression of design limitations imposed by the open loop transfer function

directly in terms of these quantities. For example, a well-known theorem of

.* Bode [7,9] states that for stable open loop transfer functions with greater

than one pole roll-off the integral overall frequencies of the log magnitude

of the sensitivity function must equal zero. In the presence of bandwidth

limitations this imposes a design tradeoff among system sensitivity properties

in different frequency ranges ([9] and Section 3.3 below).
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It has not been common, however, to formulate other limitations --

explicitly in terms of IS(jw)l and IT(iw)[. For example, it has long bei

recognized that the presence of right half plane poles and zeros in the open

loop transfer function imposes limitations upon the design of feedback systems.

These limitations are frequently expressed in terms of the effect on the phase

of the open loop transfer function. Suppose the plant is nonminimum phase.

Then,using classical analysis techniques,it can be seen qualitatively that

requiring IS(jw)I to be less than one over some frequency interval implies that

IS(jw)[ is greater than one elsewhere. This fact is proven by Francis and

Zanes [21, Theorem 3]. These authors show that if the plant has a right half

plane zero, then requiring IS(jw)I to be arbitrarily small over some interval

forces IS(jw)l to be arbitrarily large elsewhere.

Despite the importance of JS(jw)l and IT(jw)f as measures of design

quality, it has been more common to express limitations due to open right half

plane poles and zeros as constraining the values of S(s) and T(s) at isolated

points away from the jw-axis [2,15,16,20-22]. The purpose of this chapter is to

present equivalent statements of the right half plane pole and zero constraints

in terms of integral relations which must be satisfied by IS(jw)l and IT(jw)j.

These constraints show that desirable properties of the sensitivity and

complementary sensitivity functions in one frequency range must be traded off

against undesirable properties at other frequencies. These tradeoffs are a

direct consequence of properties of linear time invariant systems. Thus the

limitations discussed in this chapter are independent of any particular

choice of design method.
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The remainder of this chapter is organized as follows: Section 3.2

is devoted to the derivation of the integral relations from the right half

plane pole and zero constraints. In Section 3.3 Bode's integral theorem,

* referred to above, is extended to open loop unstable plants and consequences

for feedback design are discussed. Section 3.4 contains a discussion of the

limitations imposed upon system sensitivity properties by the integral

constraints due to open right half plane zeros. Section 3.5 contains a

similar discussion of the limitations imposed upon the complementary sensitiv-

ity function by unstable open loop poles. The effect of the relative location

of right half plane poles and zeros to frequency ranges of interest is discussed

" in Section 3.6. Some brief remarks on limitations in multivariable systems are

found in Section 3.7. The chapter is summarized in Section 3.8. Results in

this chapter have appeared in [23-25].

3.2. Right Half Plane Pole and Zero Constraints

Consider the linear time-invariant feedback system of Figure 3.1.

* Let the transfer functions of the plant model and the feedback compensator

be denoted P(s) and F(s), respectively. The open loop transfer function is

given by

L(s) P(s)F(s) . (3.1)

.The sensitivity function of this system is

S(s) 1 (3.2)
1 + L(s)

.o

I
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Figure 3.1. Feedback configuration.
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and the complementary sensitivity function [2] is

T(s) 1- S(s)

L(s) 
(3.3)

1 + L(s)

The response of the system of Figure 3.1 to disturbance inputs is

given by

Yd(s) S(s)d(s)

and the response to sensor noise is given by

Yn(s) = - T(s)n(s)

From these equations it is seen that, at a particular frequency, the effect

of disturbances can be reduced by requiring that S(jw)f < 1 at that frequency.

Similarly, requiring IT(jw) < 1 leads to a reduction in the effects of sensor

noise at that frequency. Since S(jw) + T(jw) = 1 there is a well-known

- tradeoff between the two types of response at a given frequency. The integral

relations to be derived in this section and Section 3.3 reveal that there also

exist tradeoffs among feedback properties at different frequencies.

- Assume that L(s) is free of unstable hidden modes. Then the feedback

* system is stable if S(s) is bounded in the closed right half plane. Note this

* assumption on L(s) implies that the closed right h4if plane poles and zeros of

the plant and compensator must appear with at least the same multiplicity in

L(s).

Assume also that L(s) can be factored as -A

L(s) (s)B (s)B z(s)e (3.4)
p
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-STThe term e , T> 0, represents a time delay if r > 0. The term

N
z z -s

B (s) + TI (3.5)z i i s

is the Blaschke product of open right half plane zeros, including

multiplicities:

{z. ; i=l,...,N z  • (3.6)

Similarly,

N
p pi-s

B (s) = Hi (3.7)
p i=lPi+

is the Blaschke product of open right half plane poles, including

multiplicities:

{P ; i=l,...,N} . (3.8)

Finally, L(s) is proper and has no poles or zeros in the open right half plane.

For later reference, consider the following class of functions.

Given F(s) , define

M(R) sup IF(ReJ) j , eE [-,r/2,-.r/2]

8e

171
'.:Then F(s) is said to be in class R provided

lim M(R) = 0 . (3.9)

Class R includes many functions of interest. If L (s) is a proper rational
0

di
function, then log L O(s) and -- log Lo(s) are in class . Functions of the

ds
form log L(s) with L(s) L (s)e r > 0, are not. If, however, the feedback

40
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system with sensitivity function (2.2) is stable, then log S(s) and --log S(s)
ds

are in class R despite any time delay in L(s).

From (3.2) and (3.3) it is clear that right half plane poles and

zeros of L(s) constrain the values of S(s) and T(s) at these points in the

right half plane [15,16,20,22]. One way of expressing these constraints,

following immediately from (3.2) and (3.3), is now given.

At each closed right half plane zero, z, of multiplicity m it

follows that

s(z) = 1

(A)- di

"si =0 i-l,...,m-lds i  s = z "

Similarly, at each closed right half plane pole, p, of multiplicity n it

follows that

T(p) 1

(B) di
d 
i

diT =0 i1i,...,n-1i["ds i  S= p

"* Note that the above constraints can be expressed in terms of either S or T

via the identity

S(s) + T(s) = i (3.10)

Assume that the feedback system is stable. Then S(s) and T(s)

S. have no poles in the closed right half plane. In order to express the

constraints (A) due to open right half plane zeros in terms of S(jw)l,it is

!" ."," "* ,.'.'*.., -*--.-. -(-*. *'' - , . *," . :' . . . . . . . * . - . -. . ; " , . ,- ,, . , ,
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necessary to remove the zeros of S(s) at the open right half plane poles of

L(s). Note the sensitivity function can be factored as

S(s) = Cs)Bp(s) (3.11)
p

where S(s) has no poles or zeros in the open right half plane. Since Blaschke

products are all-pass of unit magnitude (lB (jw)f - 1 Vw),it follows that -
p

IS(jw)j - 1S(jw)j Vw. The constraints upon the sensitivity function at open

right half plane zeros (A) can be expressed in terms of the sentivity function

on the jw-axis as follows.

Theorem 3.1: Let z=x+jy be an open right half plane zero, with multiplicity
di

m, of the open loop transfer function L(s). Assume that - log 9(s) is in
ds

class R, i--,l, ,m-l. Then, if the corresponding feedback system is stable,

the sensitivity function must satisfy the following integral constraints:*

1rlogjB (z)j = f loglS(jw)l de (W) (3.12) -/

p -0

7rB-1(z) = f Z.S(Jw) d6 (W) (3.13)
P z

d log B- s) I o s) d () (3.14)
ds' s=z -0 ds s= jW

The function 6 (w) is given by

0 (w) = arctan [wx-] " (3.15)

z x

Proof: A simple application of Poisson's Integral Formulas [26,27]. See

Appendix A for details.

The results of Theorems 3.1 and 3.3 remain valid even if L(s) has
jw-axis poles. Similarly, Theorem 3.2 remains valid if L(s) has jw-axis zeros.
This is discussed further in Appendix A.

......
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In order to express the constraints (B) due to open right half

plane poles in terms of IT(jw)I it is necessary to remove any zeros of T(s)

at the open right half plane zeros of L(s) as well as any time delay. Assume

again that the feedback system is stable. Then the complementary sensitivity

function can be factored as

T(s) T(s)B z(s)e-S (3.16)

* where T(s) has no poles or zeros in the open right half plane. The fact that

-STB z(s) and e are all-pass functions of unit magnitude implies IT(jw)l It(jw).

The constraints upon the complementary sensitivity function at open right half

" plane poles (B) can be expressed in terms of this function on the jw-axis as

follows:

Theorem 3.2: Let p= x+ jy be an open right half plane pole, with multiplicity

n, of the open loop transfer function L(s). Assume that - log T(s) is in
ds-

class R, iO,l,...,n-l. Then, if the corresponding feedback system is stable,

the complementary sensitivity function must satisfy the following integral

constraints:

7rlog B (p)l + Trxt f logjT~jw)j d6 (w (3.17)
-00 p

-'.-l

wgBl(p) + 7yx f oi(jw) de (W) (3.18)
-~ p

Tr (log B-l (s)esT) = log T(s) dO (w) (3.19)
ds' S = P - ds is jW P

The function 0 (w) is given by
p

M () - arctan [ x (3.20)
p x]

*1 . - . * .•*. .
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Proof: See Appendix A.

Each of the integral relations of Theorems 3.1 and 3.2 places a

constraint upon the sensitivity or complementary sensitivity funciton. For

the purposes of this chapter the constraints which are most insightful are

those given by (3.12) and (3.17). These constraints give the area under the

logjS(jw)j and logIT(jw)I curves; the area is calculated using the jW-axis

weighted by the location of a right half plane zero or pole, respectively.

The weighting function

e (w) arctan [] s-x+jy
s x

is shown in Figure 3.2.

It is of particular significance that (3.12) and (3.17) constrain

the integrals of logIS(jw)I and log[T(jw)I. This fact implies that feedback

properties in different frequency ranges are not independent. To see this,

note that since

,d6 S(W) = > 0
% dw 2x + (y.-w)

it follows that e (W) is an increasing function of c. Moreover, the terms on
s

--7 the left hand sides of equations (3.12) and (3.17) are nonnegative. These

facts reveal that systems which reduce the response due to disturbances or

sensor noise (IS(jw)l < 1 or IT(jw)I < 1) in some frequency range necessarily

increase this response at other frequencies. Thus, feedback properties at

different frequencies must be traded off against one another to achieve a

satisfactory design. These tradeoffs will be discussed further in

Sections 3.4 and 3.5.

I,.......-% .. ', ., -
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Figure 3.2. Geometry of weighting functions.

.4 1,
.. . . . . . . . . :.1



38

It seems intuitive that right half plane poles and zeros which

are close to frequency ranges over which design objectives are given

constitute a greater obstacle to the achievewent of these objectives than

if these poles and zeros were far away. The weighting function appearing

in the integral relations verifies this intuition and yields a precise notion

of the proximity of a zero or pole. The relation between the locations of U"J

zeros and poles and the corresponding weightings is discussed further in

Section 3.6.

Finally, note that the weighted length of the jw-axis is finite

(and equal to r). This implies, for example, that it is not possible to

trade off a given amount of sensitivity reduction by allowing IS(JW)i to

exceed one by an arbitrarily small amount over an arbitrarily large

frequency range. The amount by which JS(jw)l exceeds one cannot be made

arbitrarily small. The significance of this observation will become clear

in Section 3.3, where an extension of the well-known Bode integral theorem

is presented.

3.3. Generalization of Bode's Integral Theorem

The purpose of this section is to extend a well-known theorem of

Bode [7] to open loop unstable systems. Bode's original result was valid

only for open loop stable systems, despite a claim of Horowitz [9, p. 307]

to the contrary. The implications of this result for feedback design have

been discussed by Horowtiz [9] and others [3,181.

* * . .
.

.
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Bandwidth constraints in feedback design typically require that the

loop gain be small above a specified frequency. In addition, it is frequently

required that the loop gain possess greater than a one pole roll-off above

tlat frequency. These constraints commonly arise due to the need to provide

for stability robustness despite uncertainty in the plant model at high

frequencies. Bandwidth constraints also arise due to limitations imposed by

actuators and sensors. One way of quantifying such constraints is by

requiring that

M
, L(jw)j < l+k ' w>wo (3.21)

*where k>O0 and M <n
wher k>+--- -M. The positive value of k insures that a greater

0
than one pole roll-off is obtained while the value of m imposes a bound on

the magnitude of the loop gain.

Bandwidth constraints such as (3.21) in turn impose a constraint

upon the integral of the log magnitude of the sensitivity function. First,

the requirement that the loop gain have greater than a one pole rolliff

yields the following theorem:

Theorem 3.3: Assume that the open loop transfer function L(s) possesses

finitely many open right half plane poles {pi : il,...,N } including
1 p

multiplicities. In addition, assume that

lim sup RIL(s)] = 0 (3.22)
R-- is>R

Rejs]>O

I..
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Then, if the closed loop system is stable, the sensitivity function must

A satisfy

N

r Z Re[pi] f logS(jw)ldw (3.23) 4
" iffl 0 U

0I

Proof: See Appendix A.

Note that Theorem 3.3 is valid for systems which include right

half plane zeros and time delays in L(s).

If N W 0, then Theorem 3.3 reduces to Bode's theorem. This

theorem states that on a plot of loglS(jw)l versus w the sensitivity reduction

area (logjS(jw) < 0) must equal the area of sensitivity increase (loglS(jw) > 0)

in units of decibels x (radians/sec).

If N > 0, then the area of sensitivity reduction is less than theINp

area of sensitivity increase by an amount proportional to the sum of the

distances from the unstable poles to the imaginary axis. This indicates that

a portion of the loop gain which could otherwise contribute to sensitivity

reduction must instead be used to pull the unstable poles into the left half

plane.

By itself, Theorem 3.3 does not impose a meaningful design

limitation since the necessary area of sensitivity increase can be obtained

by allowing ls(jw)I to exceec one by an arbitrarily small amount over an

arbitrarily large frequency range. (In this respect Theorem 3.3 differs from

Theorems 3.1 and 3.2.) However, only part of the bandwidth constraint (3.21)

was used to obtain Theorem 3.3; namely, the fact that k> 0 implies (3.22) is

satisfied. Practical bandwidth constraints also specify the value of m in
.- 3

.,.: .,. . .. . . . , . ... . ., ... . , . -. . . .. . . . ., .,. . . , :. .. L i :.:
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(3.21). Thus (3.21) implies there exists a frequency w such that i+- E<1i

WC

It follows that

IL(jw) -+i__< E W > Ww . (3.24) ..
W

where k> 0. This property of the open loop transfer function yields the

following bound.

Corollary: Assume that, in addition to (3.22), the transfer function L(s)

satisfies the bound (3.24). Then

* logjS(jw)ldw < log[ ]-.w (3.25)

k

Proof: See Appendix A. a

The bound (3.25) is crude and in fact is an aoptimistic estimate

of the integral in question. Nonetheless, it indicates how bandwidth

constraints which limit the loop gain as a function of frequency impose a

tradeoff upon system sensitivity properties. Suppose that a given level of

sensitivity reduction is desired over some low frequency range. Then (3.25)

places an upper bound on the area of sensitivity increase which can be

obtained at frequencies greater that w and, therefore, a lower bound on the

area of sensitivity increase which must be present at lower frequencies. This I
fact can be used to obtain a lower bound (greater than one) on the maximum

value of sensitivity increase below wc Note that the bound (3.25) can be

* increased oniy by relaxing the bandwidth specification. In practice this may

not be possible due to the necessity of insuring stability robustness. Thus

" 1

7 ;. - : - . ; " .' " - - " .-" ' " " -" -". .' '."'-".+" -. ', 2 '. ' ,"
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a tradeoff is imposed among system sensitivity properties in different _

frequency ranges. The benefits of sensitivity reduction in one frequency

range must be obtained at the cost of increased sensitivity at other

frequencies whenever bandwidth constraints are imposed. The generalization

. of Bode's Theorem presented here shows that this cost is greater for open

loop unstable systems.

3.4. Limitations on the Sensitivity Function due to Open Right Half
Plane Zeros

In Section 3.2 it was shown that the presence of open right half

plane zeros places constraints upon the system sensitivity function. These

constraints show that if sensitivity reduction ([S(jw)j <1) is present in some

frequency range, then there necessarily exist other frequencies at which the use

of feedback increases sensitivity (IS(jw)I >1). The purpose of this section is

to illustrate this requirement by deriving some lower bounds on the maximum

amount of sensitivity increase given that a certain level of sensitivity

reduction has been achieved over some frequency range.

For a given plant model P(s) suppose it is desired to design a

feedback compensator F(s) such that a specified level of sensitivity reduction

is obtained over a conjugate symmetric range of frequencies Q2. Let the desired

level of sensitivity reduction be given by

1S(jW)1 < a < 1 VwE (3.26)

Let z be an open right half plane zero of L(s) and let the weighted length

of the frequency range Q be denoted

Conjugate symmetry implies that if G 2, then -E -
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9 (Q) f d6 ) (3.27)

The weighted length of the complementary frequency range = {w :9 w2}

p is given by

E (0')  ir e 61) (3.28)
z z

From Figure 3.3 it is clear that T > e (R) > 0 provided that Oh and 0#R.
z

It is also clear that if nl C a2, then E ) (

Define the maximum sensitivity

ISJI sup IS(jw)l (3.29)
W

The following theorem gives a lower bound on the maximum sensitivity due to

achievement of the sensitivity reduction level (3.26) for a nonminimum phase

system. As this lower bound is greater than one, it follows that the closed

loop system exhibits a sensitivity increase over some frequency range.

Theorem 3.4: Let the open loop transfer function L(s) have open right half

* plane poles and zeros given by (3.8) and (3.6). Suppose that the closed loop

system is stable and that the level of sensitivity reduction (3.26) has been

achieved. Then for each zE the following bound must be satisfied:

I1 e z  B) (z) z(3.30

where e (2) is given by (3.27).
z :i;z

*. Proof: From (3.12) "

logBp (z)j fr log S(j )Id6z(w) + f logjS(j)1de (e ) (3.31)

p
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Since supJS(jw)J < a by design, and since suplS(jw)I < jS. by definition,
S2C

it follows that

irloglBl (z) I < log(a) E (0) + logi S E z(Qc) (3.32)
p z

Exponentiating both sides of (3.32) yields the result.

In general, a different lower bound is obtained for each zero (an

exception being pairs of complex conjugate zeros). Note that a similar bound

• has been derived by Francis and Zames [21, Theorem 3]. The bound of Theorem

3.4 is less crude, and the proof and results are more insightful. In addition,

although (3.30) is derived for the simple specification (3.26) the method

readily extends to more general specifications. This is clear from the proof.

Inequalities (3.30) and (3.32) must be satisfied for each open

right half plane zero of L(s). Before discussing the tightness of these

inequalities the significance of each term will be briefly explained. First,

however, note the facts that a< lB pl(z) > 1, and Gz (Q) < ,r imply that the

right hand side of (3.30) is strictly greater than one. This verifies that

the maximum sensitivity is indeed greater than one.

The term e (Q) given by (3.27) is the weighted length of the

frequency range over which sensitivity reduction is desired; the term

0 (.2c) given by (3.28) is the weighted length of the complementary frequency

* range. The relation between these weighted lengths and the location of the

zero is discussed in Section 3.6. To illustrate, Figure 3.4 shows how the

weighted length of the frequency interval Q = [0,w ] varies as a function

of .2 for a zero at s = 1 and at s= l+j. From Figure 3.4 and inequalities

(3.30) and (3.32), it is clear that a significant level of sensitivity reduction

S

.*.~.t. .- I - .- . - . -.... ....
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Figure 3.4. Weighted length of frequency interval.
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at frequencies near a right half plane zero is necessarily accompanied by a

large sensitivity increase at other frequencies. Moreover, suppose that

sensitivity reduction is desired over all but a lightly weighted portion of

the jw-axis. Then Theorem 3.4 shows that the accompanying sensitivity

increase must be greater than if sensitivity is permitted to exceed one at

more heavily weighted frequencies. The above comments are illustrated in

Figure 3.5 by plotting the lower bound on logjS = for the frequency interval

= [0,1 rad/sec], zeros at s = 1 and s= 1+ j, and various levels of sensitivity

reduction. The system in this example is assumed to be open loop stable.

If the system is open loop unstable then the lower bound (3.30) on

.. jSIj is increased as a function of the proximity of the unstable poles to

the zero in question. This is a consequence of the fact that the weighted

area under the logIS(jw)f curve is positive for open loop unstable systems.

Thus the presence of unstable poles in the open loop transfer function tends

to worsen the sensitivity performance of the closed loop system. Since

N .-Np P-+z ,

7logB l (z)l = Z log - (3.33)
i=l 

-
it follows (unsurprisingly) that systems with approximate right half plane

pole-zero cancellations can have especially bad sensitivity properties.

As an example, the magnitude of one term of (3.33) is plotted in Figure 3.6

versus various locations of a real pole for a zero at s- 1. The effect of

an unstable pole at s- 2 upon the lower bound (3.30) for zeros at s= and

s = 1+ j and various levels of sensitivity reduction over the frequency

'I.-.

K . ?'j ; - ' i " .' - -. - " - ': . :- - - -- i . . ? i i. " . - - _. - i. " . .' .. . - : . " . ' " " . - , : . i ? " " " i
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Figure 3.5. Lower bound on maximum sensitivity: Open loop stable.
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interval - [0,1] is illustrated in Figure 3.7. This bound should be

compared with that for an open loop stable system plotted in Figure 3.5.

In general, the bounds of Theorem 3.4 will not be tight for a

variety of practical as well as theoretical reasons. Consider the bound
.? 9

(3.30) for a single zero. From (3.31) it follows that this bound is satisfied

•: .with equality by a function 9(s) for which

"w(J) = (3.34) ,

where jj is given by the right hand side of (3.30). The function 9(s)

is illustrated in Figure 3.8 for an open loop stable system with a zero at

s-i+ j and a level of sensitivity reduction a.= .1 over the frequency interval

[0,1 rad/sec]. This function has the minimum possible value of maximum

sensitivity increase of all functions satisfying the sensitivity specification

(3.26).

As mentioned earlier, a sensitivity function with a gain characteris-

tic as in (3.34) and Figure 3.8 is in practice neither achievable nor desirable.

It is not achievable due to the corresponding requirement of an infinite

bandwidth open loop transfer function, nor desirable due to robustness considera-

tions. In most cases robustness constraints will, at a minimum, require that

iS(j w)-I <E for w2 = [ 3 ,] (3.35)3 3.

The effect of the constraint (3.35) may be analyzed by a straightforward

modification of Theorem 3.4. As E0, the bound (3.30) is replaced by

• . ..,.

- . ..

... . .. . .. .. .. .. ... . . . .... . . ... . ....- .. _ .. ...
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Figure 3.7. Effect of unstable pole on maximum sensitivity bound.j
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z %

aSI .  e ' ( ( 8)(02) (3.36)

where 0' 2 c [. As 8 (W') is an increasing function of w3 ' it

follows that for fixed values of z, a, w and w2 the minimum possible value

of JS. increases as w3 decreases. This minimum value would be attained by

a design for which equality is achieved in (3.36). T- gain characteristic

of such a sensitivity function for the data of Figure 3.8 is plotted in

Figure 3.9 for various values of w Note the effect of the weighting

W function upon the value of IS as a function of w3" For this example the

increase in maximum sensitivity due to the requirement (3.35) is negligible

for w sufficiently large.

Even though the gain characteristics of Figures 3.8 and 3.9 are

discontinuous they may be approximated arbitrarily closely by stable rational

functions. Thus, the bounds (3.30) or (3.36) would be tight if no other

constraints on sensitivity were present. In order to realize these sensitivity

functions by applying feedback around a given plant, however, integral relations

(3.12)-(3.14) due to each open right half plane zero of L(s) must be satisfied.

Thus, the sensitivity function constructed as in Figure 3.8 or 3.9 to satisfy

(3.12) for one zero will not, in general, satisfy integral gain relations for

other zeros. Recall that the sensitivity functions of Figures 3.8 and 3.9 are

constructed to yield the minimum possible value of IS1. for the given

*~ sensitivity specification under the constraint imposed by a single zero.

Thus, the implication of the preceding discussion is that this minimum

possible value is optimistic and the lower bounds (3.30) and (3.36) cannot
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be tight. Finally, the practical need to limit complexity of the compensator

will limit the ability to realize piecewise constant functions for which the

bounds are tight.

The results of Theorem 3.4 can be useful in applications by allowing

an estimate of the minimum price, in terms of sensitivity increase, which

must be paid for a given level of sensitivity redvt-tion over an interval. For

example, given n, Q' and a as in Figure 3.9, the minimum possible value of

Js1 can be computed using the above procedure for each zero. If this value

is too large for any zero then it may be necessary to reduce the level of

sensitivity reduction a. Alternatively, the locations of the frequency

intervals Q and Q' could be modified. There are, of course, other tradeoffs

involved; for example, increasing the system bandwidth may not be permissible

due to robustness considerations.

3.5. Limitations on the Complementary Sensitivity Function Imposed by

Unstable Poles

In Section 3.2 it was shown that the presence of open right half

plane poles places constraints upon the complementary system sensitivity

function. These constraints show that there exists a tradeoff among system-

sensor noise-rejection properties in different frequency ranges. This

tradeoff can be thought of as dual to that imposed upon the sensitivity

function by right half plane zeros.

Lower bounds on the maximum value of JT(jw)I can be derived which

are similar to those of Section 3.4. Specifications on sensor noise response,

Le-

7 7.,
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analogous to (3.26) are usually imposed at high frequencies. Assumption of

such a specification leads to a bound similar to (3.30). At low frequencies

IT(jw)I is usually constrained to be near unity by the requirement of small

sensitivity. This fact can be used to construct a lower bound similar to

(3.36).

One difference between the results of Sections 3.4 and 3.5 is that

time delays worsen the tradeoff upon sensor noise reduction imposed by

unstable poles. This is plausible for the following reasons. The use of feedback

around an open loop unstable system is necessary to achieve stability. Time

delays, as well as right half plane zeros, impede the processing of information

around a feedback loop. Thus, it is reasonable to expect that limitations

due to unstable poles are worse when time delays and/or right half plane zeros

are present. Note in particular that the term due to the time delay in (3.17)

is porportional to the product of the length of the time delay and the distance

from the unstable pole in question to the jw-axis. This is consistent with

the above interpretation.

It should also be noted that the reciprocal of the complementary

sensitivity function has been interpreted as a measure of system stability

margin against unstructured multiplicative uncertainty [4,11-14,20]. Under

this interpretation, Theorem 3.2 shows that unstable poles also impose a

tradeoff upon the size of this measure of stability margin in different

t frequency ranges. Thus, this stability margin cannot be large at all

frequencies.

%A
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3.6. Dependence of Weightings upon Pole/Zero Location

In the previous sections it was shown that the weighted length of

various frequency intervals is important in determining the tradeoffs imposed

* by right half plane poles and zeros via the integral relations of Theorems 3.1

and 3.2. Intuitively, the difficulty in achieving the benefits of feedback is

-% a function of the proximity of such zeros and poles to frequency ranges over

which design specifications are imposed. The fact that weighting functions

appear in the integral relations justifies this intuition and allows the notion

of proximity to be made precise.

The purpose of this section is to discuss the dependence of the

. weighting assigned to a frequency interval upon the relative location of the

pole or zero and the interval. This dependence can be seen qualitatively from

i Figure 3.3. The quantitative analysis in this section should prove useful in

* constructing design specifications which reflect the tradeoff between benefits

and cost of feedback imposed by right half plane poles and zeros. The discus-

sion of this section uses weightings imposed by right half plane zeros, but

identical results hold for weightings imposed by right half plane poles.

For purposes of illustration, consider the frequency interval

[wit2]u[-w2,-i] (3.37)

Then (3.37) yields

z (  z - z ) 
+ ez ) - ez(- 2) (3.38)

m1

z Z z z I

s;I
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From Figure 3.3 and Equation (3.38) it is obvious that e (2) is a monotonically

increasing function of Aw - c2-W V For fixed values of w and z, a simple

calculation reveals that

___ 1 2 1 2(39
.'.-'.' ffiX{ (rz (W + ) + (r -(wI+A )) (3.39)

where (see Figure 3.2)

r ( 2) = Vx2 + (y-w)2  s x+jy . (3.40)s

Equation (3.39) confirms that the severity of the tradeoff imposed by the

integral relation (3.12) and estimated by the bound (3.30) becomes increasingly

worse as the length of the frequency interval over which a given level of

sensitivity reduction is desired is increased. For a real zero, the two terms

on the right hand side of (3.39) are equal in magnitude and are monotonically

decreasing functions of Aw. For a complex zero in the upper half plane the

first term dominates, is an increasing function of Aw until rz(w 1 +AW)= Im[zI,

and decreases thereafter (Figure 3.3). The second term is monotonically

decreasing. These observations indicate that the greatest incremental degrada-

tion in performance due to an incremental increase in the length of an interval

of sensitivity reduction occurs for values of Aw such that w 2 is in the vicinity

of y = Im[z]. This is verified for the frequency interval w = 0, 2 and

zeros at s = .1 and s= .l+j in Figure 3.10.

Another interesting result is obtained by fixing the length of the

frequency interval and varying the location of the interval relative to the

zero. If Aw< zj, then from Figure 3.3 it follows that as w is increased

-• -° .- .--..- K. - - . .. . . . .
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Figure 3.10. Weighted length of Q [0,Aw].
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from 0 to the weighted length of the frequency interval increases and

then decreases. This is verified quantitatively from

aez (j) 1 2 1 2
- x rz (0w - 'r (w

aw rz 1z1
(3.41)

1 2 1 2+ x{ (la -..
Z(-w

Again, for a real zero the two bracketed terms in (3.41) are equal and

negative. For a complex zero in the upper half plane the second term is

negative. The first term is monotonically decreasing and equal to zero for

2 ffi y. Together the contributions of the two terms indicate that the

weighted length of the frequency interval reaches a maximum when the midpoint

of the frequency interval is somewhat less than the imaginary component of the

zero, with corresponding effect on the difficulty of achieving suitable

sensitivity performance. This is illustrated in Figure 3.11 for a frequency

interval Q = [wi,W1 +1] and zeros at s= 1 and s = l+10j.

It is also interesting to consider the effect of varying the location

of the zero relative to a fixed frequency interval. Of course, plant zeros

cannot be varied in practice; however, this analysis can provide infromation as

to which of several zeros causes the most difficulty in design.

A simple calcualtion shows that, for z x+ jy,

98 (n) (y - 2 (y - Wi) (y + 2 (y + )

z 2_____ 2_____ 1______ _____

zx 2 2 2 2' (3.42)
X rz ( 2 rz (W1 )2 r z (- 2 ) r z (-w 1 )

I
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For a real zero, (3.42) reduces to

,EI (n) 2(w2-W )(-x +W Wx 2 1 2 (3.43)
r(W 2 ) rx(W1 )

From Figure 3.3 it is clear that as x is increased from zero,

* e (Q) first increases and then decreases. Equation (3.43) reveals that the
z

maximum value of 9 (Q) is achieved for x = i w2 . For a complex zero in thez

upper half plane, each of the two terms in (3.42) increases and then decreases

as x is increased from zero. The first term is zero at x = I(y-w) (y-W 2); the

second term is zero at x = V(y+wl)(y+W2). Thus, the maximum value of 8 (SI)

is achieved at some intermediate value of x, which could be determined explicit-

ly from (3.42). These results are illustrated in Figure 3.12 for the frequency

interval Q = [0.1,5) and zeros at s-x and s-x+lOj.

Another simple calculation shows that

a -1 + 1 1 1
'. aY r(w) 2  r (W) r(-W) r (-w)

z 2 zi1 z 2 z 1
(3.44)

x(W2 -Wl) (W2+WI-2y) x(w 2-w I ) (W2 +WI+2y)
212 2 2 2 2r(W) r(w) rz(-w) r(-W

z 2 z 1 z 2 z I~

As y is increased from 0, the second term in (3.44) is negative; the first

term is monotonically decreasing and is zero at y = 2 Note that this

result is consistent with (3.41).
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Figure 3.12. Weighted length of frequency interval as a function of real
component of zero.
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3.7. Remarks on Multivariable Systems

The purpose of this section is to briefly comment on the constraints

that right half plane poles and zeros of a matrix open loop transfer function

impose upon the corresponding matrix sensitivity and complementary sensitivity

functions. Although the situation is more complicated than for single loop

, systems,some useful results can be obtained using the results of this paper.

Again, the results are illustrated for the sensitivity function although

analogous statements can be made about the complementary sensitivity function.

Let L(s) C n xn be a matrix of transfer functions and assume that

the feedback system whose sensitivity function is the matrix S(s) - [I+ L(s)]_

is stable. A commonly used measure of system sensitivity reduction [4,11-14]

is the largest singular value, or matrix two-norm, of the sensitivity matrix.

The results of this paper cannot, in general, be applied to singular values.

Consider instead functions of the form

Svu(S) v S(s)u , (3.45)

where u and v are constant unit vectors in Cn. The response of the system to

disturbances entering in the direction spanned by u is given by S(s)u. The

- function S (s) is the component of this disturbance response appearing invu

the output direction spanned by v. Each function of the form (3.45) has

the property that

'vHS(jw)u < a [S(jw)] - AS(jw)1 2  (3.46)

. . . . . . .- . ..- - . .-

! .. ~- -
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Thus, to insure good sensitivity reduction properties at a given frequency,

it is necessary (but not sufficient) to insure that Iv S(jw)uj is small at

that frequency for a particular choice of u and v. For stable feedback

systems, functions of the form (3.45) are analytic and bounded in the closed

right half plane. Hence the results of this paper can be used to study the

effect of right half plane transmission zeros upon the magnitude of

Iv HS w)ul and thus to indirectly study o[S(jw)].

If S vu(s) has zeros in the right half plane, then these are either

isolated or S (s) -O. The latter case is trivial. If the zeros are isolated
vu

then they can be factored out using a Blaschke product as in (3.11) to form a

function

Su(S) =S (S) B-(s) (3.47)

which has no right half plane zeros and for which § (jW)i ISvu(jw)l,
vu vu

One difference between the function Svu(s) and a scalar sensitivity

function is that S (s) can possess right half plane zeros which are not due
vu

to unstable poles of L(s). For example, let

1 2(s-2)
"- S+3 9+3 -

L(s) -

s-20 s+3
(3.48)

oV'.

U V as

L 1T

• -., ,',- - *.-.- . * , ... .. .. , :..-. *. . . . .': .. . ..... ,...... - .. . . .- . ,- .



66

Then the function S vu(s) corresponding to (3.48) has a zero at s 8. This

type of zero does not necessarily appear as a consequence of internal stability

as do zeros at the poles of P(s) and F(s). Nonetheless, zeros of this type

can be present in a given design and will be seen to worsen tradeoffs due to

the transmission zeros of L(s).

If L(s) has a transmission zero at s= z, then it is easily verified

that S(z) has an eigenvalue equal to one. Let w be a unit magnitude right

eigenvector of S(z) corresponding to this eigenvalue. Then the unit vector u

may be written as

u f aw + Bw1  (3.49)

2 2where a and B are complex scalars with la] + 131 l,and w1 is a unit

vector orthogonal to w. Then the magnitude of (3.45) at z is

Is = vHw + Sv S(z)w,1 (3.50)

Lemma A.1 can be applied to show that

'rloga vHw + avHS(z)w~l + )logB fogSv(Jw)de(w) (3.51)

If the input direction u is equal to the right eigenvector w, then

(3.51) reduces to

irlogivHwI + 7TlogIB- (z)l = f logiS vu(Jw)Id;z() (3.52)

This equation shows how the presence of a right half plane zero constrains

Hthe magnitude of v S(jw)w provided that v, the output direction of interest, 6.

i-i-I-

- * .°,. .
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has a nonzero component in the direction of the eigenvector w. If in fact

v w, then v w 1 and (3.52) is similar to the constraint (3.12). If v and w

Hare orthogonal, however, then v S(s)w has a zero at s- z. If this zero is

isolated then it can be removed via the Blaschke product; the value of the

Hresulting function § (s) is not constrained at s z. Otherwise, v S(s)w 70.
vu

-* In either case there is no constraint imposed upon the weighted integral of

logjSvu(JW) I. If 0 < IvHwI 1, then a constraint is imposed whose severity

decreases as Iv wl decreases.

The purpose of the above discussion is merely to show how some

information about the effects of transmission zeros on closed loop sensitivity

can be obtained and is not intended to be complete. For example, results can

also be obtained using left eigenvectors of S(z). It should be pointed out

£that the results of this section are consistent with those of Wall, Doyle and

Harvey [19], who discuss multivariable right half plane zeros in terms of the

extra phase lag they produce in certain directions.p

3.8. Summary

In this chapter, limitations on feedback design due to right half

plane poles and zeros of the open loop transfer function have been discussed.

These limitations are expressed directly in terms of the magnitude of the

sensitivity and complementary sensitivity functions evaluated aiong the

jw-axis. This form of expressing the limitations should prove useful in that

IS(jw)I and jT(jw)j are directly related to the quality of a feedback design.

The Bode integral theorem has also been extended to the case of open loop

unstable systems.

*. . . . . . . . - .. . .
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The limitations of Theorems 3.1-3.3 were interpreted as imposing

tradeoffs among system properties in different frequency ranges. It should

be pointed out that the origin of these tradeoffs is physical realizability.

The property of realizability relevant to the present context is the fact

that the Laplace transform of the impulse response of a physical system is a

locally analytic function of the complex frequency variable. Thus the origin

as well as the implications of the tradeoffs discussed above are significantly

different from the well-known tradeoff between performance and robustness at

a single frequency imposed by the algebraic relation S(s) + T(s) = 1.

.-

.. ..
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3 CHAPTER 4

COMMENTS ON DIRECT DESIGN USING
CLOSED LOOP TRANSFER FUNCTIONS

* 4.1. Introduction -

As a prologue to attempting generalizations of classical single

loop feedback theory to multiple loop systems, it is at least interesting to

speculate upon why the existing theory developed as it did. One motivation for 7

such speculation is that it might provide insight into how classical theory has

avoided various pitfalls. This insight, in turn, might hopefully provide

guidance into how these same pitfalls may be avoided in extensions to multiple

loop systems. Of particular interest in this chapter will be the limitations

- on feedback properties quantified by the Bode integral relations discussed in

Chapter 2 and the integral constraints due to right half plane poles and zeros

". discussed in Chapter 3. Recall that the ability to cope with these limitations
JI.

and the tradeoffs they impose was the third important feature of classical

methods pointed out in Chapter 2.

- Return now to the first two features of classical methods discussed

in Chapter 2. First it was observed that certain closed loop transfer

functions evaluated along the jw-axis directly express the performance and

robustness properties of a feedback system (a fact which has been noted by

many authors for many years). Two transfer functions of particular interest

are the sensitivity function and complementary sensitivity function, denoted

S(s) and T(s) = I- S(s), respectively. Indeed, the values of IS(jw)I and

'' IT(jw)I may reliably be used to judge the quality of a given feedback design.

This fact, in turn, implies it is also natural to state design goals directly

as bounds upon IS(jw)l and IT(jw)l.

~ * -. *. -.-. .9 ... h.P * ,~.°-. %
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Despite the useful properties of closed loop transfer functions,

classical control techniques in fact proceeded by shaping the open loop

transfer function, L(s) = P(s)F(s), where P(s) and F(s) are the plant and

compensator transfer functions, respectively. That feedback design via

open loop shaping is feasible is no doubt due to a second important feature

of classical methods. This is the existence of rules of thumb for relating

open and closed loop system properties.

At first it might seem odd that classical techniques focussed

directly upon open loop, rather than closed loop, transfer functions. A

little thought, however, suggests one (at least plausible) reason why this

might have advantages. This reason is that the effect of various limitations

imposed by properties of the open loop transfer function might be dealt with

more readily, both in analysis and design, by methods employing open loop

shaping. One might in fact conjecture that a tradeoff exists between design

methods employing open loop transfer functions, in which design limitations

are seen directly but feedback properties can only be assessed indirectly,

and methods employing closed loop transfer functions, in which feedback

properties may be directly assessed but plant limitations are not so readily

seen.

The purpose of this chapter, then, is to investigate whether design

techniques employing the open loop transfer function indeed do have any

significant advantages over techniques directly employing closed loop transfer

functions. Emphasis will be placed upon situations in which the class of

achievable closed loop transfer functions is constrained by properties

necessarily possessed by the open loop transfer function.
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Many design problems could be used as a basis for the comparison

undertaken in this chapter. The problem which is most convenient for the

present purpose, due to the wealth of available literature, is the design

* of a system whose sensitivity function is to satisfy certain design goals

despite limitations imposed by open loop system properties.

Finally, to return to the concerns voiced in the first paragraph

of this section, suppose it is indeed true that open-loop based design

techniques have important advantages in the design of single loop feedback

systems. Then this might suggest that attempts to generalize closed-loop

based design techniques to multiple loop feedback systems might not be as

appropriate as attempts to generalize open-loop based techniques. Even if

this conclusion is judged too strongly, it would nevertheless be of much

interest to have knowledge of what information and insights are lost when

" open-loop techniques are abandoned. If this information and insight are

indeed critical to the completion of a satisfactory design, then presumably

they would have to be obtained from alternate sources and incorporated in

any candidate design technique.

Portions of this chapter have appeared in preliminary form in [28].

4'.2. The Sensitivity Design Problem

The purpose of this section is to discuss the design of a single

loop feedback system whose sensitivity function is to satisfy certain design

L goals under bandwidth constraints imposed by properties of the plant and/or

open loop transfer function. (Constraints due to nonminimum phase plants

' 2, ," ~~~~~~~~~.. ...- ".. .".. .. .-- . ".. . . . -,- ' " ... 2. . i i.i . -' . , . .,
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are studied in Section 4.3.) It will be argued that realistic bandwidth

.- constraints place nontrivial limitations upon the class of achievable

sensitivity functions, that design methods directly employing the sensitivity

function must face the problem of insuring that an admissible compensator

will be obtained, and that design techniques employing the open loop transfer

function may circumvent this difficulty by considering only admissible

compensators from the outset.

The sensitivity function of a single-loop feedback system is given

by S(s) = [1 + P(s)F(s)] -
. This function is important in that IS(jw)! is a

measure of system response to disturbance inputs and of sensitivity to small

variations in the plant parameters from their nominal values.

For purposes of discussion, consider a design specification requiring

sensitivity reduction and disturbance rejection (i.e., requiring !S(j)!<<l)

over some low frequency range while also requiring that sensitivity not be

excessively large at any frequency. This goal may be formulated quantitatively

as imposing a frequency-dependent bound on the magnitude of the sensitivity

function:

.S(jWJ) < M(W) VW (4.1)

_. • ( ) C [0, i (4.1a)

M(W)
MQ MS (W) >i ""1 (4.1b)

Design constraints such as (4.1) are present in most practical

problems, whether stated explicitly or only implicitly. As discussed in

. Chapters 2 and 3, it may well be that the bound (4.1) cannot be satisfied

. -°



73

due to some limitation imposed by properties of the open loop transfer function.

In such cases it is relevant to ask whether it is possible to modify M(w)

appropriately so that a specification which is achievable and which also admits

satisfactory designs is obtained. Toward this end, note that typically the

value of JS(jw)f is more critical to system performance at some frequencies

than at others, and that satisfaction of design constraints is certainly more

important at the more critical frequencies. Again for the purpose of discus-

sion, it will be assumed that the low frequency constraint MH(w) is a hard

constraint to be satisfied, if at all possible, in order to achieve good

system performance. The high frequency constraint MS(w), on the other hand,

will be regarded as a soft constraint whose satisfaction, while desirable,

is not as critical.

Recall it was conjectured in the previous section that certain

difficulties faced by design methods employing closed loop transfer functions

are either avoided or are encountered in a more tractable form by methods

* employing the open loop transfer function. The remainder of this section is

* devoted to discussing this conjecture in the case where the open loop transfer

function must satisfy various bandwidth constraints. By bandwidth constraints

* is meant both frequency-dependent bounds on JL(jw)J as well as requirements

on the rate at which JL(j)J-0 as w (If L(s) is a rational transfer

-:function then the latter requirement can be rephrased in terms of the order

of the zero of L(s) at infinity.)

First discussed is an argument of Horowitz [9, Section 6.13]

L concerning the feasibility of design by directly choosing the sensitivity

function to satisfy design goals such as (4.1) while insuring the resulting

,°

. . -*.



74

feedback compensator is proper. Now, as has recently been pointed out [16],

any sensitivity function obtainable with an improper feedback compensator may

be approximated as closely as desired by a sequence of strictly proper

compensators. Thus objections based solely upon the inability to guarantee

that a strictly proper compensator is obtained can readily be overcome.

Realistic design constraints, however, impose much more severe limitations on

the class of admissible compensators than mere propriety. The implications

of these constraints for the method of design by direct choice of sensitivity

function shall be discussed in detail after Horowitz' argument is reviewed.

Suppose that one directly chooses a function S(s) which is stable

and satisfies the design constraint (4.1). Assume for simplicity that the

plant is a stable, minimum phase rational function. Then a (possibly improper)

feedback compensator yielding S(s) as the sensitivity function of the

resulting design may be obtained from

F(s) = P-(s)[1- S (s)] (4.2)

Now, in order to be realizable, this compensator must be at least proper.

This requirement in turn may be translated into an algebraic constraint on

the sensitivity function, as is now described. Again, this discussion is

taken from Horowitz [9, Section 6.13].

Following Horowitz, let the plant have n poles and m zeros. Since

physical plants are strictly proper, it follows that the pole-zero excess

e = n- m must be greater than zero. By straightforward manipulation,

I.% Horowitz shows that the sensitivity function must have the form

• ~~~~~~~...- ...... . ... .................... .....-..... "...".-........'.-... .....- .'-.. " "-
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nni-i :
s + Z ais

S(s) i-i (4.3)
' n
s + Z bis

i=l

where

s-l~s

This fact, in turn, implies that the function 1- S (s) must have a zero of

order (at least) e at s-. The reason for this constraint may be seen

from (4.2); it is necessary in order that the compensator F(s) be proper.

Horowitz then proceeds to point out the difficulty involved in

choosing a function S(s) which satisfies both the design goals (4.1) as

well as the constraints (4.3). Indeed, by fiddling with examples, one

readily concludes that the problem is not trivial, and in fact seems nearly

intractable for all but very small values of e.

p To summarize, the requirement that a proper compensator be obtained

translates into an algebraic constraint on the class of achievable sensitivity

functions. The necessity of satisfying this constraint implies that attempts

to design by directly choosing the sensitivity function will meet with

difficulty. The problem is easily avoided, however, in open loop based

,* design. Since the compensator F(s) is the design variable, one can trivially

insure that F(s) is proper merely by choosing it to be so. Of course, one

- still has to verify that the resulting closed loop system is stable and that

'S(jw)I satisfies design goals. These may themselves not be trivial problems;

however, classical Nyquist/Bode techniques have proven to be effective in

1 1
r[~~~~~~~~~.-.-+.. .-.......".." . ......................... - -........ "".... .. ...1/
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establishing the relationship between L(jw) and S(jw). Moreover, if a given

design is judged unsatisfactory, classical techniques can provide insight

into how the compensator might be modified to alter sensitivity properties.

Now, in [9], Horowitz ended his discussion after concluding that

choosing S(s) to satisfy both (4.1) and (4.3) is at best difficult. It is

possible, however, to continue the analysis to show that, for e > 2, the

goals (4.1) and constraint (4.3) may actually be mutually incompatible. Thus

not only is the problem difficult, it may well be theoretically impossible.

This can be show by using the analyticity of S(s) to translate the algebraic

constraint on 5(-) into a constraint on IS(jw)l, Vw. For e > 2, the Bode

integral relation (Theorems 2.1 and 3.3) implies that
-" N
. p

f logIS(jw)jdw = E Re[pi] (4.4)
0 i=l

where ; il,...,N is the set of unstable poles of L(s). (Although not
p

stated in the literature or in Chapter 3, there also exist integral constraints

on the first e- 2 derivatives of the sensitivity function.)

" 1 At this point it should be noted that the problem as posed thus far

is not completely realistic. In practice, the class of admissible feedback

compensators is constrained by requirements much more severe than mere

propriety. In particular, not only is the order of the zero of L(s) at

infinity constrained, but also limitations on the bandwidth of L(s) are

present. These latter limitations in turn impose constraints on the band-

width of the feedback compensator F(s). (Also, note the approximation schemes

of [16] are not applicable when the bandwidth of the compensator is

constrained.) Two practical reasons why the bandwidth of the open loop

7-t
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transfer function must be constrained are the natural bandwidth limitations

of the plant and the necessity of rolling off the open loop gain to provide

stability robustness (for example, to avoid exciting unmodelled high frequency

dynamics). Thus in realistic situations S(s) must be chosen so that the

resulting open loop transfer function satisfies a bandwidth constraint such

as that discussed in Section 3.3,

IL(Jw)l < < Ek (4.5)

for w>w , <l and k>O. As the Corollary in Section 3.3 shows, the tail
c

of the integral in (4.4) must satisfy

CO log[ ]W
f logIS(jw)ldw < k (4.6)

Thus, requiring that L(s) satisfy constraints such as (4.5) imposes even more

severe limitations upon the class of achievable sensitivity functions. Hence,

2 closed loop based design techniques are faced with the difficulty that

candidate sensitivity functions must yield a compensator lying in a rather

severely constrained class. Now,it is true that the class of function S(s)

fir, yielding such compensators may be characterized directly in terms of IS(jw)i

using (4.4) and (4.6). However, the problem is still nontrivial since it is

difficult to look at a plot of logIS(jw)l and determine ,hether the necessary

integral constraints are satisfied. The problem is particularly insidious

• since the value of IS(jw)i is directly related to system performance. Since

- small values of IS(jw)J indicate desirable sensitivity properties, the tendency

would be to attempt a design for which the integral of logIS(jw)j in (4.4)

lei is negative. Since increasing IS(jw)l at some frequency results in poorer

-~ *- -. -: ~ ~.4i . - ~ - ~ 4i
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performance at that frequency, one would like some insight into how this

might be accomplished so that design quality is sacrificed no more than is

absolutely necessary. Again, open loop based design techniques approach

this problem by limiting the choice of candidate compensators to those which

are admissible. Moreover, the Bode gain-phase relations and Nyquist plots

may be used to provide insight into the fact that the rate at which loop gain

rolls off affects the value of the sensitivity function. To summarize, the

difficulty in satisfying constraints on admissible sensitivity functions

is readily dispensed withand insight to aid in designing a compensator

yielding satisfactory closed loop properties is available.

4.3. Design Limitations Due to Nonminimum Phase Plants

The purpose of this section is to discuss design limitations which

are present as a consequence of the plant (more gererally, the open loop

transfer function) being nonminimum phase due to the presence of zeros in the

open right half plane. These limitations restrict the class of achievable

sensitivity specifications and thus pose obstacles to any design scheme

whose goal is satisfaction of such specifications. As in the previous

section, a comparison will be made between design techniques based upon the

open loop transfer function, i.e., those which use the feedback compensator

as the design variable, and a hypothetical design procedure which uses a

candidate sensitivity function as the design variable. The latter technique

must, of course, insure that the resulting feedback compensator yields no

unstable pole/zero cancellations in the open loop transfer function. The
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e..

two design schemes compared may be referred to as "design by direct choice

of the compensator" and "design by direct choice of the sensitivity function,"

respectively.

When a feedback system is designed around a nonminimum phase plant,

internal stability requires that the feedback compensator possess no unstable

poles at the right half plane zeros of the plant. This constraint on the

class of admissible compensators implies that, to be achievable, the

sensitivity function must satisfy the following algebraic constraints at

each right half plane plant zero z of multiplicity m:

S(z) 1

di
i S1 0 i-l,...,m-l . (4.7)

If a proposed sensitivity function violates (4.7), then the feedback compen-

sator obtained from (4.2) will have one or more unstable poles at right

half plane plant zeros. Experience with some examples should convince the

reader that choosing a function S(s) satisfying one or more constraints

(4.7) while also achieving design goals such as (4.1) may be quite difficult.

(In fact, as shown in Chapter 3, it may well be impossible. This will be

. reviewed shortly.) To summarize, if the constraints (4.7) are not satisfied,

then the compensator F(s) obtained from (4.2) will be inadmissible due to

unstable pole-zero cancellations in L(s). On the other hand, if these

constraints are satisfied, but the design goals (4.1) are not achieved, then

it isn't clear that insight is provided into how S(s) might be modified to

better achieve design goals while maintaining internal stability.

......................................................... ....
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Classical design techniques based upon directly choosing the

feedback compensator can, on the other hand, avoid the difficulty of

satisfying the constraints (4.7) simply by selecting only candidate feed-

back compensators which have no poles at right half plane plant zeros.

Insight into the relation between the feedback compensator and the resulting

sensitivity function is available from Nyquist and Bode plots. In particular,

the difficulty caused by the extra phase lag in L(jw) contributed by the

right half plane zeros is readily seen.

Although insight into the qualitative effects of right half plane

plant zeros has long been available, only recently have precise quantitative

statements-of their impact upon feedback design been obtained. As shown in

Chapter 3, the algebraic constraints (4.7) have equivalent expressions in

terms of integral relations constraining the behavior of log S(jQw). These

relations are significant in that they express limitations due to right half

plane zeros in terms of the sensitivity function evaluated along the jw-axis,

where design specifications are imposed.

For example, the constraint S(z) = 1 is equivalent to (see Theorem

3.1)

-- o
"logB p(z) j logjS(jw)jdez(W) (4.8)

where B (s) is the Blaschke product of unstable plant and compensator poles
p

and

d z . x
dw 2 2 , z x + jv (4.9)

x + (y-W)



I..-

81

er

(If z is complex, then there exists an additional constraint on 4S(jw); if

z has multiplicity greater than one, then there exist constraints on
idiT-log S). Before proceeding, some relevant observations concerning the

ds
integral constraint (4.8) will be reviewed.

1

First, since IB- (z)I > 1, and since (4.9) is positive Vw, it

follows that, if js(jw) < 1 over some frequency range, then necessarily there

exist other frequencies for which IS(jw) > I. Thus a tradeoff exists among

sensitivity properties in different frequency ranges. Moreover, since the

weighted length of the jw-axis is finite (and equal to Tr), this tradeoff

must be accomplished primarily over a finite frequency range.

Next, consider the implications of this tradeoff upon the ability

of a feedback system to satisfy both (4.1) and (4.7). As shown in Chapter 3,

one may derive a lower bound on ISI. sup given that (4.1a) is

satisfied. Using this lower bound, one may then analyze whether it is also

possible to satisfy (4.1b). Thus one can actually prove that certain design

specifications are unachievable given the constraints imposed by the right

half plane plant zeros.

The question now arises as to whether the integral relations derived

in Section 3.2 may provide sufficient insight to allow one to design by

directly choosing the sensitivity function. Certainly some insight may be

obtained from the function 6 (w), which quantities the notion of proximity
z

of a point on the jw-axis to a right half plane zero. The presence of this

term in (4.8) shows that the price paid, in terms of sensitivity increase,

for obtaining a given level of sensitivity reduction over a given frequency

interval is a function of the location of that interval relative to the zero.
ineral.
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For example, at sufficiently high frequencies the weighting becomes very

small. Hence the value of IS(jw)j must be either very large or very small

at those frequencies in order to contribute to the value of the integral

(4.8). On the other hand, requiring sensitivity to be very small over a

frequency range containing y= Im[z] can lead to large values of sensitivity

elsewhere. This effect is exacerbated if IS(jw)l is only allowed to exceed

unity over frequency intervals whose weighted length is small.

Now consider the problem of design by directly choosing the

sensitivity function when the plant has a single (real) right half plane

zero x. For simplicity, assume that the plant is stable. Let S (s) be a

candidate sensitivity function. From the Lemma in Appendix A it follows

that

wlogjsW(x) I  f logIS (jw)Ide( )

This equation is significant since S1 (s) has an internally stable realization

only if S1 (x) - i. Now, suppose this condition is not met, and assume further

that IS (x)l< 1. (Since good sensitivity is achieved by requiring that IS (iw)

is sufficiently less than one, this is surely the most likely case, at

-~~ least in an initial attempt.) Now, if indeed IS1(WkI 1, it will be necessary

to choose a new sensitivity function S2 (s) with larger values of !S2(J1 over

some frequency range. The weighting function x (w) yields at least some
x

insight into how this may be done. For example, choosing a new sensitivity

function whose magnitude is larger only at lightly weighted frequencies will

not generally be effective; one must increase the magnitude at frequencies

for which the weighting x (M) is significant. If it turns out that

4.x
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significantly large values of the weighting lie only within the frequency

range over which sensitivity is desired to be small, then nontrivial com-

promises in system performance will have to be made. Whether enough insight

is generally available from the weighting function e () to enable such
x

compromises to be made satisfactorily remains to be seen.

In any event, as will now be shown, the fact that P(s) was assumed

to have only one zero in the right half plane facilitates design of S(s).

This follows since each candidate sensitivity function may easily be modified

to produce a new candidate function yielding an internally stable design.

All that is necessary to perform the modification is to define the new

function ( Si( Of course, I§(Jw)l and ISi(Jw)I may have very
S , (x)" +i

different values. Suppose, however, that a function S.(s) is obtained which
3.

satisfies design goals sufficiently well and for which Si(x) t l. Then S.(s)

defined in this fashion will both yield an internally stable design and,

Isi( w)
since ISi(x)I,will likely come close to satisfying the design

goals. Of course, this strategy works because the plant was assumed to have

but a single right half plane zero. If more than one zero (even a complex

conjugate pair of zeros) is present, then simple scaling will not generally

yield a function satisfying all the necessary constraints.

Finally, consider once again the approach to this problem involving

open loop shaping; i.e., "design by direct choice of the compensator." From i
a Nyquist diagram one can see that the frequency response of the open loop

transfer function must eventually penetrate the unit circle centered at the

critical point. Thus there will necessarily exist a frequency range for

which S(jw) > 1; in particular, there will exist a peak in the sensitivity

. . , -...
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function near the point on the Nyquist plot of L(jw) closest to the critical

point. The size of this peak may be varied via lead or lag compensation, but

its existence will be unavoidable. Moreover, it can also be seen that, if

the size of the peak is not to be excessively large, then the open loop gain

must be rolled off before the phase lag produced by the zero becomes too

great. Again, whether such insights are as readily available in the design

procedure involving direct choice of the sensitivity function remains an

open question.

4.4. Sensitivity Design via Ho-Optimization

The purpose of this section is to discuss some properties of a

recently proposed approach to the problem of feedback design. This approach, -

which utilizes H -optimization methods, employs closed loop transfer functions

directly in the design process. The specific design problem discussed in this

section is, as in the rest of this chapter, the achievement of good sensitivity

properties. The solution to the relevant Ho-optimization problem is discussed

at length by Zames and Francis [16]. It should be emphasized that the design

goals in [16] are not the satisfaction of frequency-dependent norm bounds

such as (4.1). Other authors, however, have considered satisfaction of norm

bounds as the goal of H -optimization. The results of (16] are used in the

present analysis for availability and for convenience.

As discussed earlier in this chapter, feedback design methods which

directly employ closed loop transfer functions may be faced with difficulties

which are either avoided or rendered more tractable by classical methods
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employing the open loop transfer function. Again, it is conjectured that

there may be a real tradeoff between design techniques dealing directly with

closed loop transfer functions, for which limitations imposed by properties

of the open loop plant may only be dealt with indirectly, and design

techniques dealing directly with open loop transfer functions, for which

the feedback properties of a design may only be assessed indirectly. Thus,

once the H0 approach has been described, it will be examined to see whether

difficulties in dealing with open loop plant limitations are present in this

closed loop based design technique also.

The H0 sensitivity minimization problem is to find, among all

stabilizing feedback compensators, one for which a weighted infinity norm

of the sensitivity function is minimized:

min JWS - min sup IW(jw)S(jw) 1 (4.10)
F F W

The stable, minimum phase, weighting function W(s) is to be supplied, via some

procedure, by the designer. For nonminimum phase plants, internal stability

requires that the constraints (4.7) be satisfied at each open right half

plane plant zero. Thus the optimization problem (4.10) is constrained by

(4.7). However, the limitations on feedback design imposed by (4.7), which

were interpreted in Section 4.3 as tradeoffs among levels of sensitivity along

the jw-axis, are treated in this framework merely as algebraic constraints

The reader is cautioned that the term weighting function has two uses in this

chapter. These should be distinguishable by context. One use is to refer to
the functions ez(w) and 6 (w) which appear in the integral constraints due to
right half plane zeros ana poles (Theorems 3.1 and 3.2). The other use is to

refer to the function W(s) used as a design variable in the Ho-optimization
process.

-.I
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imposed upon the sensitivity function at isolated points in the open right

half plane. The significance of this distinction will become apparent below.

The solution to the problem (4.10) given in [16] shows that, given

the existence of a nonminimum phase plant, the optimal unweighted sensitivity

function has the form

S Cs) = k B (s) BF*(s)W- (s) , (4.11)

where B (s) is the Blaschke product of unstable plant poles. The Blaschke

product BF*(s) contains unstable poles of the optimal feedback compensator.

There are at most one less of these poles than the number of open right half

plane plant zeros. The unstable pole locations, as well as the value of the

constant k*, are determined by the constraints (4.7).

Since Blaschke products are allpass of unit magnitude, it follows

from (4.11) that

IS (jw)l Ik I W-w-1(j )I (4.12)

Thus the weighting function determines the shape of the sensitivity function;

i.e., its relative magnitude at different frequencies. The level of sensitiv-

ity reduction, however, is determined by the constraints (4.7) at the right

half plane plant zeros.

One possible way to construct the weighting function is to choose

W(s) =-M(s) (4.13)

where M(s) is a stable minimum phase transfer function with IM(j,)I =MM,

Vw, and M(w) is given by the specification (4.1). Using this procedure,

the H'-optimal solution satisfies the specification (4.1) if

. ., -
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WS = IW(W)S(J)l < 1 (4.14)

Moreover, if IWS*I > 1, then the specification (4.1) is unachievable. Since

the optimal weighted sensitivity function W(s)S (s) is allpass (4.10)-(4.11),

Rit follows in turn that if (4.1) is violated, then it is violated equally
I.

at all frequencies.

Now, one advantage of the HI-optimization procedure is that it

guarantees the constraints (4.7) will be satisfied. The design goals (4.1),

on the other hand, may well be violated, whether the weighting function is

chosen to directly reflect these goals, as in (4.13), or not. This follows

from the fact that, although the designer can specify the shape of the

optimal unweighted sensitivity function, the level, or magnitude, is determined

by the constant k which is determined by the locations of the right half

plane plant zeros.

Suppose, then, that a weighting function has been chosen and the

resulting optimal unweighted sensitivity function violates the design goals.-

In addition, suppose that it is desired to choose a new weighting function

*' (perhaps by suitable modification of the existing weighting) so that the

new optimal sensitivity satisfies, for example, the hard design specification

K (4.1a). Of course, this would entail violating the soft design specification

(4.1b). In view of the presumed relative importance of the hard and soft

specifications, this is not unreasonable provided the v4olation of (4.1b)

is not excessive. The question which naturally arises is: At which fre-

quencies, and by how much, should the weighting be modified in order to

accomplish this task?

-.
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One might hope that some insight into this question would be

furnished by the manner in which the current design violates the design

specifications. Certainly classical design techniques provide some such

insight. For example, looking at Nyquist and Bode plots not only reveals

when a given design has poor sensitivity, but also gives information

concerning how to use lead and/or lag compensation to modify the existing

design. In addition, these techniques provide some insight into how the

additional phase lag contributed by right half plane zeros complicates the

design process. In particular, qualitative insight into how the location of

the zero limits the frequency range over which large open loop gain may be

achieved is provided.

Note, however, that H designs violate (4.1) even at those fre-

quencies which are far away from any right half plane zeros and for which the

value of IS(jw)I contributes little to the tradeoff imposed by the integral

constraint (4.8). While the fact that the specification is violated

equally at all frequencies isn't necessarily bad by itself, it doesn't seem

to furnish much insight into how difficult various portions of the specifica-

tion are to satisfy. Consequently, it would seem that insight into how the

weighting function might be modified must be obtained from other sources.

This issue will be explored in the next section.

4.5. Relations Between W(s) and IS )

In this section the relation between the weighting function and the

optimal unweighted sensitivity function is investigated. The purpose is to

examine issues which must be considered in attempting to modify the weighting '--

. . .. . .. . - * . , .. . , . - . . , . ..- , . . . . . . . . .
-- ,'. ..-...-. -, -/-..,, -.- ,, -~~~~~~~~.. ...-.'. . ... o,,.. . -.. -... ,... ..-.... '..-. ., . .-
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W(s) to obtain a sensitivity function satisfying frequency-dependent magnitude

bounds, such as (4.1), over at least some frequencies.

First from (4.7) and (4.11) it may be seen that the following

conditions must be satisfied at each right half plane plant zero z of

multiplicity m:

1 k B p(z) F"(z)w-(z)

.. (4.15)

d' B " B-F- i-l,...,m-1

. dsi PF .s=z

From (4.15) it follows that if the plant possesses only one (real) right half

* plane zero (so that BF*(s) 1) then

lk* " IW(z)BI(z)I (4.16)

If more than one zero is present, the value of Ik I increases as a function

of the proximity of tI, unstable compensator poles to the zeros:
. NF

- zF pi+  z

, F* i=l Pi z

Suppose, however, that the conditions

W(zj) - W(zk) Vj,k (4.17a)

and, at each zero of multiplicity m> 1,

id -l diWl'0-- B P W Wz +B (z) i1l,. ..,m-l (4.17b)
dsi ds

sz snz

are satisfied (which may not be possible for open loop unstable nonminimum

. .. . . . . . . . . . . . . . . . . . . . . .. . -, , .. . . ... . .. .. . . .. .i
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phase plants). Then (4.15) can be satisfied with BF*(s) - 1. Hence the

optimal compensator is stable and Ik*I again satisfies (4.16).

In any event, at each open right half plane zero the optimal

unweighted sensitivity function must satisfy

IS*(Jw)l > lW(z)I'IB- (z)'iw- )l (4.18) -.

with equality, holding if and only if (4.16) holds.

Motivated by the discussion of the previous section, suppose one

wishes to modify an existing weighting function so that IS*(Jw)[ obtained

from the new weighting satisfies a magnitude bound in some frequency range

without becoming excessively large at other frequencies. From (4.11) and

(4.15) it follows that simply scaling W(s) by a constant leaves S *(s)

unchanged. Thus in order to affect IS(Jw)I it is necessary to change the

relative magnitude of IW(jw)I at different frequencies. This will now be

discussed.

Assume first that P(s) has only one right half plane zero, so that

(4.18) is an equality. Then (4.18) shows that IS*(jw)l is a function of both

the magnitude of the weighting at the zero and the weighting along the jw-axis.

If these quantities were independent, then one could reduce JS (Jw)j at some

frequency simply by increasing the magnitude of the weighting at that

frequency and/or by reducing the magnitude at the .zero. Unfortunately,

however, the magnitude of the weighting at the zero is not independent of

its value along the jw-axis. In fact, IW(jw)I is completely determined by

fJW(j)I, Vw}. This follows since, at each open right half plane zero, z, of

multiplicity m, the weighting satisfies the integral relations (see

Appendix A):

.- . - .. .. . . . . - . . ,. , . . ., .. . ..s ' . . ., , .
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7rloglW(z)j - loglw(jw)Id6 (W) (4.19a)

"-4 W(z) f 4W(jw)d8 (w) (4.19b)
z

"% Zdi di %
7T l o,,,, - f A-- 1ogWdI  w i-...,- (4.19c) "
ds ds

SMZ s-jw

de
where z is given by (4.9).

From (4.19a) it follows that increasing the magnitude of the

weighting along the jw-axis can only increase the magnitude of the weighting

at the zero. Similarly, IW(z)l can be decreased only by decreasing IW(jw) I

over some frequency range. Hence, from the above discussion of (4.18) and

its implications, it follows that attempts to modify the weighting to reduce

IS (jw)I will be complicated by these two opposing tendencies.

Thus, in order to modify IW(jw)l to affect IS*(Jw)l in some desired

fashion, it appears necessary to have a good understanding of the relation

between jW(jw)j and IW(z)I. This relation is not completely transparent;

however, some insight may be gained from (4.19a). For example, at high
. d8,

frequencies for which - is small, changing IW(jw)I will have relatively

little effect upon the value of jW(z)!. Thus,attempting to meet a low

frequency specification on IS*(Jw)l by decreasing the weighting in a high
d8zfrequency range will be effective only if dw is relatively large in this -=

range. Otherwise the effect will be to increase sensitivity at high

frequencies with very little attendant decrease at low frequencies.

If the plant has more than one right half plane zero, then in

general the bound (4.18) will not be tight due to the presence of unstable

rAwe-'
~• ,

S . . - - -. -- - - - - - - . -.i
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compensator poles. Nevertheless, if this lower bound is too large for any

zero, the above comments apply to attempts to reduce the bound. Many plants

with more than one right half plane zero (including all stable plants) can

be used in a stable feedback system with a stable compensator. For these

plants an alternate procedure is to require the weighting to satisfy (4.18).

This requirement may also be stated in terms of W(Jw) using (4.19).

In Section 4.4 it was pointed out that design limitations due to

nonminimum phase plants are treated in the H framework as constraints

imposed at points in the right half plane, rather than along the jw-axis.

From the preceding discussion, however, it appears that interpreting the

constraints as tradeoffs imposed along the jw-axis is necessary if the

weighting function is to be shaped to satisfactorily affect the sensitivity

function. Moreover, it has been argued that it is necessary to consider

the relation between IW(jw)l and IW(z) . Qualitative insights into this

relation are available; however, whether these insights are sufficient to

reliably produce a satisfactory design seems to be an open question.

4.6. Comparison between Design by Directly Choosing the Sensitivity Function

and Design via H'-Optimization

Two procedures have now been discussed for designing a system with

satisfactory sei.sitivity properties when the plant is nonminimum phase.

Both these procedures employed a closed loop transfer function, specifically,

the sensitivity function, in performing the design. The first, discussed in

Section 4.3, consisted of iterating a candidate sensitivity function Si(s),

until one which satisfied the constraints (4.7) was obtained. This technique
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had the advantage that one could choose the level of sensitivity reduction

ISi(jw)I and the disadvantage that an internally stable system is generally

not obtained.

The second design scheme, discussed in Sections 4.4 and 4.5, was

the H*-optimization method. This technique involved iterating a weighting

function W (s) in order to obtain a satisfactory sensitivity function,
i

and had the advantage that an internally stable design is always

achieved (albeit with generally improper and possible unstable compensators).

The disadvantage of this technique is that the level of sensitivity reduction

along the jw-axis is determined a posteriori via the optimization process,

and consequently cannot be controlled directly.

The perceptive reader will have noticed, however, that the

difficulty involved in both techniques arises from the same source; namely,

the fact that the value of a stable minimum phase rational function at a

point in the right half plane is completely determined by its values along

the jw-axis. Consequently, these two quantities cannot be manipulated

independently in design. Thus, although the two design procedures yield

intermediate results with different properties, the ultimate problem which

must be solved by each is the same. This may be shown explicitly using the

following theorem.

Theorem 4.1: Let P(s) be a nonminimum phase plant satisfying the assumptions

of (16, Section II, C.1)]. Let F(s) be a choice of feedback compensator and

define the sensitivity function S(s) - (l+P(s)F(s)]- . Suppose that

i) S(s) has no poles in Re[s] > 0,

(ii) S(s) satisfies Condition (4.7) at the open right half plane

zeros of P(s) and, at each right half plane plant pole, p, of multiplicity n,

-S.r . ; -S '. .j . .'- .. ¢ .' .. ' . . ' . . ' .. ., . .. ' ' ' ,, - , ' ' . %
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S (p) -0

d
-1 0 ii'1,...,n-1
ds s=p

(iii) F(s) has.< NZ - 1 unstable poles, where is the total number

of open right half plane zeros of P(s),

(iv) a c> 0 such that inf IS(s) > e, where §(s) is defined
Re[s] _ 0

by (3.11),

(v) a a>0, ,>0, and R>0 such that if IsI >R and Re[s] > 0, then

~Is(s)l < alsl

Conditions (i)-(v) are necessary and sufficient to insure a weighting function .

W(s) exists which yields the compensator F(s) as the solution to the weighted

optimization problem (4.10). The appropriate weighting function is given by

W(s) = cBp(s)BF(s)S 1 (4.20)

where Bp(s) is the Blaschke product of unstable plant poles, BF(s) is the

Blaschke product of unstable compensator poles, S(s) is the sensitivity

function for the feedback F(s), and c#O is an arbitrary constant. .

Proof: (Necessity) Suppose that W(s) is a weighting function yielding an

optimal conpensator F (s) F(s). Then it follows from (4.11) that

S (s) = kBp(s)BF(s)W (s) -

Since Ho-optimal solutions are internally stable, (i) and (ii) are saJisfied.

* z
From the fact that F (s) has at most Np- 1 unstable poles, it follows that

F(s) must satisfy (iii). Finally, from assumptions necessary to insure that

W(s) is a valid weighting function (16], (iv) and (v) are satisfied.

ft t, *-t°o. . . . . . t f tf
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Sufficiency: Let F(s) be a feedback compensator with S(s) the corresponding

sensitivity function, and suppose that assumptions (i)-(v) are satisfied.

Then W(s),given by (4.20),satisfies conditions the conditions in [16] to be

* a valid weighting function. By assumption (iii) the function §(s) cB P(s)

BF(s)W (s), where c and BF (s) are as in (4.20), has the appropriate formFdi

(4.10). A simple calculation shows that W(z) = cBp(z)BF(Z) and -- Wd

d' Fds i nz
c -BpBFI , i,...,m-l. This follows from the fact that S(s) must satisfy

" ds sMz
the constraints (4.7). Thus, the function §(s) satisfies these constraints

also, and by the uniqueness result of [16], S (s) S(s). It then follows

that F (s) - F(s).

Note that Conditions (i)-(ii) of Theorem 4.1 are necessary for

internal stability while (iii)-(v) will be satisfied by any practical design.

This theorem shows that the class of designs which may be obtained via HO*

methods is very broad indeed.

Recall that the application of HQ techniques discussed in this

chapter involves iterating on the weighting function Wi(s) until a satisfactory

optimal unweighted sensitivity function is obtained. Theorem 4.1 may now be

used to show to what extent this procedure is equivalent to that discussed in

*. Section 4.3 for design by iterating on candidate sensitivity functions.

Consider first the case of a plant with a single (real) right half

- plane zero, z-x, and assume for simplicity that the plant is stable. Then,

the optimal unweighted sensitivity function is related to the weighting by

S Cs) - W(x)W -(s). Thus the sequence of weightings {Wi } used in the H'

procedure may also be used to construct candidate sensitivity functions

for the direct sensitivity design procedure by setting Si(s) W (s). In

. .- *-°: . *
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general, the constraint Si(x) 1 will not be satisfied; however, as in

A S i(s)
Section 4.3, the candidate sensitivity function i(s) will satisfy

Si(x)

Si(x) = 1. Suppose, then, that one may construct the sequence of weighting

functions so that Wi(s) converges to a weighting for which the function

1w (i)00 satisfies the design specification on sensitivity sufficiently

* well. Moreover, suppose that the corresponding value of Wi(x) is approx-
*

imately one. Then, the optimal unweighted sensitivity function Si(s) -
1

W (s)W (x) will likely also satisfy the design goals sufficiently well.

Of course, the sequence of candidate sensitivity functions Si(s) will

converge to this same function. This follows easily from the fact that

""" Si(s) W "Wi(x) S(s), since Wi(x) .

Obviously, the above procedure may be reversed. One may construct

a series of candidate sensitivity functions S (s), as in Section 4.3, and

i"-"then check to see if the constraint S.(x) =1 is satisfied. If not, then
,.,~~ (.. is)

an internally stable design may be obtained by scaling: Si (s)
an i -S.(x)

The function i(s)ay then be used to construct a weighting function, as

in Theorem 4.1. Of course, this weighting function will merely reproduce

the design S.(s); i.e., the weighting W.(s) sll(s) yields the optimal
2 . i

* unweighted sensitivity function Si(s) = Si(s). Again, the success of this

* * procedure depends upon the ability to choose a candidate sensitivity function

for which ISi(jw)I satisfies design goals sufficiently well and for which

Si(x) 1.

Thus, for the case of a single right half plane zero, design

by iterating on the weighting function and by iterating on the sensitivity

function directly are equivalent. The only possible advantage one technique

'e "..''j .' .'" .''-''..'" ."' € ."' ,' ."".." .-" '. "* .'.'.2-.' ..' " .'. ' ".-' " -'.- -, '."-", ,. .. -. ,. .. o. " '".- .'.. "".-''- '4.'
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could have over the other is if it provided more insight. However, the

problem faced by both procedures is the same, and is governed by the

integral relations (4.8) and (4.19 ). It seems that, in each case, successful

IP design rests on being able to gain insight from an integral rclation.

If the plant has more than one right half plane zero (but is still

assumed stable for simplicity of exposition), then simply scaling the

candidate sensitivity function will not, in general, yield a new function

-' satisfying the constraints at all the zeros. Choosing a candidate sensitivity

*function to satisfy constraints at more than one zero as well as some design

goals would be difficult at best, despite any insights available from the

" integral relations. If, however, such a function were found, then a weighting

constructed as in Theorem 4.1 would reproduce this function as the solution

to the H*-optimization problem.

The way in which the H* approach deals with the case of more than

one plant zero is different than the direct sensitivity design approach.

The H' approach, however, violates accepted good design practice by using

- unstable poles in the compensator. These poles will be present unless the

weighting function is chosen to satisfy the constraint (4.17), which may

also be expressed in terms of integral relations using the lemma in Appendix A.

A little inspection of (a) the constraints which a candidate sensitivity

function must satisfy in order to yield an internally stable design and (b)

the constraints which a weighting function must satisfy in order to yield

a stable compensator reveals that essentially the same problem is faced by

both techniques. Thus, again, it seems the two approaches are equivalent

. and the success of each hinges on the insights, or lack thereof, to be found

in a set of integral relations.

-
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The purpose of this section has been to point out that the

H-optimization approach to sensitivity design is remarkably similar to the

method of "design by direct choice of sensitivity function." First,

essentially any design obtained by one method may be obtained by the other.

Second, the difficulty faced by both procedures is the same - the fact that

one must consider certain integral relations relating W(jw) and W(x) or

S(jw) and S(x). The success of either procedure seems to hinge on whatever

insight into these relations may be gained.

4.7. Conclusions

The purpose of this chapter has been to examine the relative merits

of two general approaches to feedback design. These two approaches are design

employing open-loop transfer functions and design employing closed-loop

transfer functions. The design problem chosen as a basis for comparison was

that of obtaining a feedback system whose sensitivity function satisfies

certain design specifications.

Two different closed loop based design methods were compared in

5 this chapter, and found to be substantially equivalent when used to address

the problem posed. In particular, both were complicated by the fact that

the values of a stable minimum phase transfer function at points in the open

right half plane are completely determined by the values of the function

along the jw-axis. Even with whatever insights may be gained from the

integral relations developed in Chapter 3, this difficulty appears nontrivial.
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SThe preceding observations suggest that open loop based design

techniques may have some real advantages, since the compensator may be

chosen a priori to be within a given admissible class. This doesn't

S necessarily imply that open loop techniques are generally better than closed

loop techniques; they are different, and must deal with problems in

- different ways. For example, using open loop techniques only allows one to

evaluate closed loop behavior indirectly. Classical single-loop design

methods utilized various rules of thumb to expedite this process. An

attempt to generalize some of these rules of thumb to multiple-loop systems

is discussed in Chapter 8. Again, as was stated in the introduction to

this chapter, the purpose of the preceding discussion is not to completely

discourage development of closed loop based design techniques. On the other

hand, the discussion has pointed out some problems in which readily usable

information seems to be lost in passing from open to closed loop methods.

Clarification of these problems and related issues should help in the

development of any design scheme.

One final remark will now be made. It is possible to interpret an

iterative design process as an exploration of the set of possible designs.

One purpose of such an exploration is to gain insight into the properties that

this set possesses. (In particular, a distinction should be made between

-characterizations of possible designs which provide insight into the achieve-

*" ment of design goals and those characterizations which do not.) If such an

exploration is done in conjunction with the development of design specifica-

I. tions, then the task of arriving at specificar:ns which realistically reflect

the essential tradeoffs inherent in the problem is facilitated. One
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conclusion may be that the so-called "trial and error" aspect of classical

design is present for a very good reason, and not necessarily as an indication

of the lack of more precise methods. Another conclusion is that it may be

unrealistic to impose design specifications based upon properties desired

from a design until some idea of the properties available is obtained.

Finally, the viewpoint of the preceding paragraph suggests a

reasonable criterion of merit by which proposed feedback design methods may

be judged. This criterion is the ability of the method to efficiently yield

insights into the class of feedback designs possible for a given plant.

Of course, other properties must also be possessed by a technique in order

for it to be generally useful.

:0
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CHAPTER 5

PREVIOUS MIMO RESULTS AND MOTIVATION FOR PRESENT WORK

5.1. Introduction

In Chapter 2 certain important concepts from classical control

theory were discussed. The purpose of this chapter is to discuss previous

work on the extension of these concepts to MIMO systems and to point out

where further work needs to be done. Thus this chapter motivates the study

of some specific problems to be proposed in the remainder of the thesis.

The discussion will at first parallel closely that of Chapter 2. Portions

of this chapter have appeared in (29].

5.2. Basic Equations for MIMO Feedback Systems

Consider a linear time-invariant multiple-input multiple-output

(MIMO) feedback system as shown in Figure 5.1. This feedback structure is

the same as that of Figure 2.1, for SISO systems, with the exception that

all transfer functions are matrices and all signals are vectors. For

.* simplicity, only square transfer function matrices are considered; such cases

are sufficient to illustrate the ideas discussed in this thesis. Specifically,

P(s) and F(s) are the transfer functions of the plant model and feedback

nxn
compensator, respectively, and take values in Cnn The signal r(s) is the

reference input; y(s), the system output; d(s), a disturbance input; and n(s),

. sensor noise. All signals take values in C.,

The output of the feedback system is again given by

y(s) - ry (5.1)y~s = r(S) + Yd(S) + Yn(S) (.)i.

Yr (s) (I + P(s)F(s)] P(s)r(s) (5.2)

• *''" C W . . . . . . . .
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dy~s)

Fn s)

Figure 5.1. Feedback configuration.
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Yd(S)- [I + P(s)F(s)- d(s) (5.3)

(S) = - [I + P(s)F(s)] P(s)F(s)n(s) (5.4)
°n

Define the open loop transfer function

L(s) = P(s)F(s) , (5.5)

the system sensitivity function

S(s) = [I + L(s)] (5.6)

and the complementary sensitivity function [2]

T(s) = [I + L(s)] L(s) . (5.7)

Note the transfer functions, (5.5)-(5.7), are obtained by breaking the loop

at the output of the plant (denoted by (xx) in Figure 5.1). Breaking the

loop at the plant input yields a generally different set of transfer functions

due to noncommutativity of matrix multiplication. These transfer functions

are obtained by reversing the order of P(s) and F(s) in (5.5)-(5.7).

Implications of this lack of commutativity will be discussed shortly.

For later reference, define

1 (s) = F(s)P(s) (5.8)

S1(S) A [I + L1 (s)] - 1  (5.9)

T1 (S) _ [I + L1 (s)] L1 (S) (5.10)

Assume that L(s) and Ll(s) are free of unstable hidden modes. Then the

feedback system is stable if S(s) (equivalently Sl(s)) is bounded in the

closed right half plane. Note the assumption on L(s) and Ll(s) implies, as

in the SISO case, that right half plane poles and zeros of the plant and



104

compensator must appear with at least the same multiplicity in L(s) and -

Ll(s). In addition, this assumption imposes conditions on the left and

right null spaces of L(s) and L1 (s) evaluated at right half plane plant

and compensator zeros. A similar condition holds for open right half plane

poles.

One difference from SISO systems is that vector and matrix norms -,

must be used to measure the magnitudes of signals and transfer functions.

In this thesis attention will be restricted to the standard Euclidean vector

norm and the induced matrix two-norm. This matrix norm is also referred to

as the singular value norm; a discussion of relevant properties of singular

- values is contained in Appendix B.

4From (5.3) and (5.6) it follows that the response of the system to

disturbance inputs is determined by the sensitivity function with the loop

broken at the plant output. Since

- max IS(iw)ub2 (5.11)

lul 2

it follows that the response of the system to disturbances at frequency w can

be made small by requiring that a[S(jw)]<<l. Note (5.11) implies that the

response to a disturbance will be small independently of the subspace of C.

in which it lies. Similarly, the response of the system sensor noise is

determined by T(s), and can be made small by requiring a[T(jw)]<<I.

The benefits of feedback in reducing the effects of uncertainty

in the plant model upon the system output can be assessed from [3]

-" " 4*.*4 '"'" 4..".-'**" -
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E c(s) S'(s)E O(s) (5.12)

S'(s) (I + PXs)F(s)] (5.13)

where P'(s) ( [I + A(s)]P(s) is the true plant. The signals E c(s) and E O(s)

are the deviations in the outputs of nominally equivalent open and closed

loop systems caused by the model error A(s). If at some frequency

a [S'(JW)] < 1 , (5.14)

then the closed loop system is said to possess the sensitivity reduction

property at that frequency. Condition (5.14) is difficult to design for

* since it depends on the true unknown plant rather than the model. Nonetheless,

at frequencies for which a[A(jw)] < 1 it is possible (4] to insure that (5.14)

holds by requiring the nominal sensitivity function to have small magnitude.

(Although this approach may fail dramatically [10] when the uncertainty

cannot be assumed arbitrarily small, or when uncertainty is present which

,- cannot be modelled as above.)

The sensitivity and complementary sensitivity functions are also

related to stability robustness properties of the system (see, e.g. [5],

-; Table 1). Suppose that uncertainty is modelled as occurring at the output

of the plant:

P'(s) ( I + A s)P(s) (5.15)
0

Assume that

(i) P'(s) and P(s) have the same number of unstable poles and

(ii) a 0 (s) is otherwise arbitrary subject to a frequency

dependent norm bound

- * * ~ - *- - . .Ilk
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:- .',[ [o(J)]I < MA(W) VW 5.6

" Then if the nominal system (A (s)- 0) is stable, the true system is

guaranteed to be stable if [4]

MA) < 1 (5.17)
a[T(jw)]

This bound requires that a[T(jw)] be small at frequencies for which uncertainty

modelled in (5.15), is large.

An important difference between SISO and MIMO systems is the fact

that stability margins in the latter are generally different at different

points in the feedback loop. Mathematically this occurs because matrix

multiplication is not in general commutative, as was pointed out in the

above discussion of transfer functions obtained by breaking the loop at

different points (Eqs. (5.5)-(5.7) compared to (Eqs. (5.8)-(5.10)).

To illustrate, suppose that uncertainty is modelled as occurring at the

plant input

P'(s) = P(s)(I + A (s)] (5.18)

rather than at the plant output as in (5.15). Under assumptions analogous

to (i) and (ii), if the nominal system is stable the true system is

guaranteed to be stable if [4]

M (W) < 1VW (5.19)

. .. -. . .... - . '
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where T (s) is given by (5.10). Thus, MIMO systems can have small stability

margins in one loop location despite having good margins elsewhere. Moreover,

when uncertainty is present at both the input and the output to the plant, the

p system can be close to instability despite good margins against uncertainty

occurring at each point separately. Such phenomena are examples of MIMO

system behavior which has no analogue in SISO systems. Examples are found

in [10]. A framework for analyzing robustness against uncertainty occurring

in different loop locations has been developed by Doyle [30] and Doyle, Wall

,, and Stein [5].

5.3. Special Cases in which SISO Concepts Generalize to MIMO Systems

The above discussion has shown that the first concept from SISO

- theory discussed in Chapter 2 generalizes readily to MIMO systems. Closed

loop properties can be determined by examining certain closed loop transfer

*' function matrices. This point of view is stressed in [4,11-14].

Differences are that more matrices must be considered, including

some nonstandard ones [5,30] when uncertainty is present at more than one

location in the loop. Attention in this thesis will be restricted to

uncertainty modelled as occurring at only one location in the loop so that

matrices such as (5.6)-(5.7) or (5.9)-(5.10) suffice to determine feedback

properties.

The second theme from SISO feedback theory is that the relation I
between open and closed loop system properties can be approximated fairly

well. Under certain conditions this relation extends to MIMO systems.

First some terminology will be introduced.

,,.. ..... ... ...... .. .......... ,..........
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From the definition of singular values of a matrix ME €
n xn

a[m] - I~ul (5.20)u e= n 2 +12
u C

1u12 = 1
and

a[M] = rn IMul (5.21) *"
u12- 2

uC n

Equations (5.20) and (5.21) motivate the following terminology. When M is

a transfer function matrix, M = M(s), evaluated at some frequency w, then

the gain of the underlying system is said to be large in all directions at

that frequency, provided that _.[M(jw)]>>1. Similarly, the gain is said to be

small in all directions, provided that a[M(jw)]<<l. If at some frequency .

a[M(jQw)]<<l<<[M(jw)],then the system has both large and small gain (in

different directions) at that frequency. Use of singular values to

generalize the notion of gain has been discussed by several authors; an

early reference is MacFarlane and Scott-Jones [31].

From (5.6) and (5.7) the following relations between levels of

open loop gain and closed loop properties can be deduced:

a[S(jW) 1<<l

a[L(jw)]>>l and (5.22) ,

T(jw) f I

and

a[T(jw) ]<<l

a ( (Jw) I<<1 and (5.23)

.*.. ......................... . ...... ... '... .. .... I
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Thus, at frequencies for which open loop gain is either large in all directions

or small in all directions, the SISO rules of thumb (2.19) and (2.20) for

relating open to closed loop properties generalize directly. When neither of

these assumptions on the gain of L(jw) hold, then previous results only suffice

to relate open to closed loop properties in special cases, e.g., diagonal

systems.

Another important concept from classical feedback theory was the

existence of tradeoffs among various design goals. These tradeoffs are also

present in MIMO systems although their exact nature is much more complicated.

Known generalizations of analytic tradeoffs among system properties in

different frequency ranges will be described first.

Tradeoffs imposed by open right half plane poles and zeros upon the .

sensitivity and complementary sensitivity functions were described briefly

. in Chapter 3. An advantage of these results was that they showed that open

right half plane poles and zeros affect feedback properties only in certain

directions. A generalization (due to Doug Looze) of Bode's integral theorem

" (Theorems 2.1 and 3.3) is now given. TI.

Theorem 5.1: Assume that the open loop transfer function matrix L(s) possesses

finitely many open right half plane poles {pi ; i-l,...,N I including
p

multiplicities. In addition, assume that each element L (s);i,j-l,...,n

'" satisfies
lim sup RILi.(s)i = 0 (5.24)
R-o jsj>R

Re[s] >

Then, if the closed loop system is stable, the determinant of the sensitivity

function must satisfy

... ..:r-..
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M".
p

w Re[pi] - f logldet[S(jw)]Idw (5.25)
i-I 0 f.

Proof: See Appendix C. 3

Corollary 5.2: Assume the hypothesis of Theorem 5.1 is satisfied. Then,

the singular values of the sensitivity function must satisfy

n Z Re[pi] = E f logi [S(jw)ldw - 0 (5.26)
i-l i-i 0 U

Proof: See Appendix C.

Corollary 5.2 shows that a tradeoff between sensitivity reduction

and sensitivity increase exists for MIMO systems as well as SISO systems.

The difference is that the tradeoff is averaged over all singular values of

S(jw). Presumably sensitivity properties could be traded off among different

directions as well as among different frequency ranges, although no insight

is given into how this might be achieved. Note, however, that if

a i[S(J ) a i[S(w)] Vi#j and Vw (5.27)

then the tradeoff for open loop stable systems is exactly the same as in

the SISO case. For open loop unstable systems the additional penalty due

to the right half plane poles of L(s) can apparently be averaged over all

loops of the system or can be concentrated more or less in some loops.

Again, no insight into how to achieve this is available.

i . .



In stamary, Corollary 5.2 indicates that tradeoffs analogous to

those found in SISO systems are present, but that they can be made between

different directions as well as between frequency ranges. When the behavior

of the feedback system is assumed to be the same in all directions, (i.e.,

(5.27) holds) the tradeoffs reduce to those found in SISO systems, with the

exception noted when the system is open loop unstable. As pointed out,

little is known about the general case.

The Bode gain-phase relations (Theorem 2.2) have also been studied

* in the context of MIMO systems (Doyle and Stein [4]), although again the

results are primarily useful for systems which have nearly identical properties

*'  in all directions. Doyle's results utilize the fact that eigenvalues and

singular values satisfy the inequality

Z[M] i xiM]I i< [M] , Vi (5.28)

Thus, if one can show that Ix [S(iw)I1I>l for some i, then it follows that

U a[S(jw)]>>l. Since

i [S(jW)1 l+X[L(j)] (5.29)

one can study the relation between gain and phase of the eigenvalues of

L(jw) near crossover to see if tradeoffs such as those imposed by the SISO

gain-phase relations are present.

A complete analysis is given in [4, pp. 9-10]; the conclusion is
d logjX i(jw)l

that the relation between and X(jw) is the same as for a
dvi

LSISO transfer function if Ai(s) has no right half plane branch points.

%,
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if X (s) has branch points, then the relation holds averaged over all the

eigenvalues defined on the same Riemann surface. These relations are most

informative about feedback properties in the special case that

[L(jw)] = IXi[L(jw)]I = 2[L(jw)] in the vicinity of crossover. If this

condition holds, then the tradeoff is the same as that for SISO systems.

* When there exist different levels of gain in different directions, then

generally

.[L(jw)] > Ai [L(j)]! > o[L(jw)] Vi (5.30)

and the eigenvalue magnitudes need not even closely approximate the singular

values. Thus, the gain in some loops could decrease rapidly near crossover

with no corresponding rapid decrease in the IXi[L(jw)]I. No insight into

.. this situation is provided, however.

The other class of tradeoffs found in SISO systems was algebraic.

*,.- Those tradeoffs exist between system properties at any given frequency and

follow from an identity which generalizes to MIMO systems as

S(s) + T(s) I (5.31)

The algebraic tradeoffs discussed in Chapter 2 extend to MIMO systems

in the following manner. If good sensitivity reduction and disturbance

rejection properties are present in all directions at a given frequency

'-. (a[S(jw)]<<l), then from (5.31),good sensor noise rejection and large

stability margins cannot be present in any direction (T(s)-- I). A similar

statement holds if a[T(jw)]<<l.
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In summary, the relation between open and closed loop system

properties, and the analysis of tradeoffs among system properties extends

readily to MIMO systems only when these properties are constrained to be

approximately the same in all directions. These cases may be viewed merely

as special instances for which no uniquely MIMO system properties are

present. The usefulness of these results will be limited to cases for

which

(i) the plant has approximately equal bandwidth in all

directions or loops,

(ii) only unstructured uncertainty, sensor noise, and

disturbance inputs are present; that is, the magnitudes of these quantities

are approximately the same in all directions.

Condition (i) will hold whenever a[P(jW)] G[P(jW)J VW. Now,

recall that the classical design methods focussed on modifying open loop

properties via a suitable choice of compensation to achieve the desired

closed loop properties. Obviously, this process is expedited if insight

into the relation between open and closed loop properties is available.

If Condition (i) fails, in particular, if the open loop plant has both

large and small gain in some frequency range, then design will be complicated

by lack of necessary insight.

Condition (ii) holds for uncertainty, as modelled in (5.16). This

condition will also hold for disturbance inputs and sensor noise which are

arbitrary, subject only to frequency dependent norm bounds:

• "
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d( w)1 2  Md(w) VW (5.32)

and

n(J w)12 M<(w Vw

If Condition (ii) fails to hold, then one is led to consider

design goals on S(s) and T(s) which specify different properties in

different loops. To see this, some simple models for structured uncertainty,

sensor noise, and disturbance inputs are considered in the next section.

5.4. Structure in MIMO Systems and Failure of SISO Generalizations

In MIMO systems it is reasonable to expect that levels of disturbance

inputs and/or sensor noise may be significantly different in diffe-rt

directions over the same frequency range. To illustrate, suppose that sensors

in some loops are noisy at a lower frequency than sensors in other loops,

while the level of disturbance inputs is approximately the same in all loops

at any given frequency. This situation can be modelled mathematically by

assuming the sensor noise can be separated into two components:

n(s) - n (s) + nu(s) (5.34)

nThe component n (s) lies in a k-dimensional subspace X of C and represents

structured sensor noise. The component nu (s) represents an additional

unstructured component, and is assumed to lie in Cn. Suppose that the

levels of the two components of sensor noise and the level of disturbance

inputs are bounded as

. . . . . . . . . . .. . . . ..V. (5.35)

.~~I SQW1 < . .N (w) .. .. ..
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. Inu(Jw)12 <- Mu (w)  V (5.36) o .

Id(Jw)2M() VW (5.37) -

Next, suppose that the ratios of the bounds on the two components of sensor

noise compared to the bound on the disturbance inputs is as shown in

Figure 5.2. This figure indicates that the structured component of the

sensor noise becomes relatively larger at a lower frequency than does the

unstructured component. Thus, the following design specification on S(s)

and T(s) is motivated. First, let Ps be an orthogonal projection [32]

onto the subspace Ks of Cn. Then, P s I - P is an orthogonal projection5S S5

onto s, the orthogonal complement of X. The design specification is

thus:

G(S(j)]<<l W < W1  (5.38a)

a[T(jw)P sJ<<l w < W < W3 (5.38b)

G[S(jw)P 1<4l W 1 w < W3(5. 38c)

a[T(jw)]<< W4 < W (5.38d)

This specification provides for disturbance rejection in all

.[ directions in the low frequency range (O,w2I for which disturbances dominate

the sensor noise in all directions. At frequencies greater than w sensor

noise in the subspace N should be rejected, since the level of sensor

noise dominates the level of disturbance inputs at these frequencies. On the

other hand, disturbances in the subspace Ms should be rejected at frequencies

less than w This follows since the level of disturbances in this subspace

still dominates sensor noise levels at these frequencies. Finally, at

frequencies greater than w4 ' sensor noise should be rejected in all directions.

• *". ., ,¢ . ... . .. - • , *,*7 . ," - , *.. 2 ''.,,. .' '
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Figure 5.2. Relative levels of sensor noise to disturbance inputs.
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Thus in this example the physical nature of the extraneous inputs dictated

the design of a system with significantly different properties in different

directions over the frequency range [ 2 ,w3 ].

Design specifications such as that just discussed can also arise

when structured uncertainty is present. To see this, consider uncertainty

modelled as occurring at the plant output as in (5.15) with A (S)ecnxn
0

given by

A (s) - a(s) YAH + Ar (s) (5.39)

L HHere, YX is a constant matrix of rank k whose k nonzero singular values

are equal to one, a(s) is a scalar transfer function satisfying

I aQW)I M (W) VWi (5.40)a

and A (s) represents residual unstructured uncertainty withr

a[A r H) < Mr(W) VW (5.41)

The first term in (5.39) represents structured uncertainty which becomes

large at lower frequencies than the remaining unstructured component. For

example, since the uncertainty is modelled as occurring at the plant output,

this might represent unmodelled sensor dynamics in the ith loop (in which

H
case YX = diag[0,...0,1,0,...0] with the one in the ith position).

A similar model using uncertainty occurring at the plant input, as in (5.18),

could be used to represent unmodelled actuator dynamics.

The proof of the stability robustness theorem in [4, p. 7] can be

followed to show that stability is guaranteed, provided that

"- . . " " . .7 . .
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C[A(jw)T(jw)]<l Vw . (5.42)

At frequencies for which A0(jw)a(jw)YXH,it follows that

M (w) < 1 (5.43)
G"YXH T(jw)]

must hold. Suppose that M (w)>>l,and let PX be an orthogonal projection
x

onto NX the column space of XH. It follows that (5.43) implies

a- [P X T~jw)]<<l (5.44) "'

n- Thus, T(jw) must be small, but only in a k-dimensional subspace of Cn

Specifically, the range of T(jw) must be restricted to the subspace NX, the

null space of the structured uncertainty.

From (5.31) it follows that (5.44) implies

Px (j)Px "(5.45)

Thus, S(jw) is approximately the identity on a k-dimensional subspace of

nC . Although the subspace containing disturbances which cannot be rejected

is not specified, the response to these disturbances is constrained to lie in

the subspace X. As in the discussion of structured sensor noise, S(jw) can

still reject disturbances lying in an (n- k)-dimensional subspace.

r7

.- . . . . ...

... . .• . .. -
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p 5.5. Summary

The above discussion has pointed out that there exist many cases

of interest for which the closed loop system has significantly different

properties in different directions over some frequency range. It was also

" pointed out that several important classical concepts have not been extended

* to MIMO systems which possess such properties. One such concept is an

understanding of the relation between open and closed loop system properties.

Such understanding is necessary to shape the open loop transfer function via

the choice of feedback compensator. Another such concept is the statement of

U various tradeoffs among system properties in different frequency ranges.

Precise statements of these tradeoffs are necessary to assess whether a given

design specification is achievable by a linear time-invariant design. Both

S these questions will be addressed, although not solved completely, in the

remainder of this thesis. First, the role of phase in HIMO systems will be

discussed.

I"i
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CHAPTER 6

GAIN, PHASE, AND DIRECTIONS IN MIMO SYSTEMS
(PHYSICAL INTERPRETATIONS)

6.1. Introduction

The purpose of this chapter is to discuss generalizations of the

classical SISO system concepts of gain and phase to MIMO systems. In addition,

the concept of direction of a vector signal will be discussed. Directionality

has, of course, no analogue in SISO system theory.

First, the physical meaning of a transfer function is discussed as

it relates to the steady-state response of a linear time-invariant system to

sinusoidal inputs. Next, the meaning of the direction of a vector signal is

* ,discussed, along with a measure of distance between signals lying in different

directions. The concept of the gain of an SISO transfer function is discussed,

. .along with the generalization to MIMO systems. Although the use of the

" singular value decomposition (SVD) to exhibit a canonical set of gains is

well-known (see, e.g., [4],[31]) this idea is reviewed for completeness.

Generalization of the concept of phase to MIMO systems has not been

as straightforward. On the one hand, the importance of the phase concept

has been called into question. In particular, it has been shown (e.g., [1]

and the discussion in Section 2.1) that the concept of phase margin is not

of primary importance even in the single loop case. On the other hand,

several different definitions of phase have been proposed by MacFarlane and

co-workers ([14],[33]). Given these observations, perhaps the most accurate

assessment is that a generally accepted concept of phase in multiple loop

systems is not yet available. Rather than attempt such a definition, in this

chapter, some physical interpretations of phase in single loop system are first
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explored. Multiple loop systems are then examined to see if similar inter-

pretations are available in the general case. The approach which will be

taken is based upon the way in which vector-valued sinusoidal signals interact

when added together. Portions of this chapter will appear in [34].

p

6.2. Properties of Transfer Functions

The response of a linear time invariant system to an input is a

function of both the input and the initial conditions. If these initial

conditions are equal to zero, then the response may be calculated from the

transfer function of the system. Let this transfer function be denoted by

L(s) e €nxn and consider inputs of the form

u(t) = kesot (6.1)

where Cis a constant vector and s x0 + Jyo is the complex frequency

of the input. Entries of k can, of course, be complex; note, however, that

(6.1) can be rewritten

u(t) r eS0t+l (6.2)

r eSot+02

r esOt+On
n

where each r,> 0 and different values of Oi imply phase differences between

c the components of the sinusoidal signal.

S.-. .- - - . . . . . . . . . . .
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* The Laplace transform of u(t) is given by

u(s). k 1 (6.3)S-S
0

The frequency response of the system, given the input u(s), is

y(s) L(s)u(s) (6.4)

The corresponding time response will, in general, have contributions from

the poles of L(s) as well as the pole s s0 of the input. For stable systems

the former contributions go to zero in the steady state and the time response

is given by

y(t) = L(so)U(t) . (6.5)

In fact it can be shown [35] that the input u(t) can be augmented with a

set of delta functions and derivatives of delta functions so that the steady

state is reached at t=+. Thus, (6.5) illustrates the manner in which

* properties of transfer functions are related to the time responses of the

system to complex exponential inputs.

6.3. Directions of Vector Signals

From (6.4) and (6.5) one can see that the action of a transfer

function matrix upon an input (6.1) is solely a function of the (one-

dimensional) subspace of Cn spanned by k. That is, choosing an input

.(t) = c uit), with c a complex scalar, yields an output Y(t) = c y(t).

Since linear systems are being studied, this is an obvious remark; however,

-this is the first manifestation of an idea which will recur throughout the

- remainder of this thesis. Namely, given a one-dimensional subspace of Cn
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3 there exist two degrees of freedom in specifying a vector within that

subspace. One degree of freedom corresponds to the magnitude of the vector;

the other is analo'gous to phase. Many system properties of interest depend

* only on the subspace in which a signal lies. For now, discussion will be

limited to making precise the notion of the direction of a vector signal.

n
The set of directions in £ will be defined as the set of one-

dimensional subspaces of Cn. The following notation is convenient: Given

" a nonzero vector in 9n denoted by a small letter, e.g., k, then the

one-dimensional subspace of Cn spanned by this vector will be denoted by a

capital script letter, e.g., K. (This convention will later be extended to

subspaces of dimension greater than one.) Thus, the direction of a signal

is given by the one-dimensional subspace of Cn which it spans.

A method of measuring the distance between directions, or one-

dimensional subspaces of Cn , will be needed. It is standard [36] to define

the angle 0 between two one-dimensional subspaces C and C2 of Cn from

UH
1 2

cos 0 c (6.6)

IcIlI121 c212

F,. where ci is an arbitrary nonzero vector in C.. Note that 0< < . Thus
1 2

is a measure of angular distance between the subspaces C and C For

S= 0, the two subspaces are identical; for T - r/2, the two subspaces are

orthogonal. The concept of angles between subspaces of Cn can also be

extended to subspaces of dimension greater than one [36].

IL
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6.4. Gain in SISO and MIMO Systems

For SISO systems the gain is a frequency-dependent function which

gives the ratio of the magnitude of the system output to that of the input.

Thus, for scalar inputs of the form (6.1):

"" ly(t) I'
gain =

-u(t) I

-L(so)u(t) (6.7)
lu(t)l

- IL(so)I

For MIMO systems, gain is a function of the direction of the input as well

as the frequency. Thus, for a vector input of the form (6.1):

g Iy(t)R
gain =Illu(t)ll

IL (So)k (6.8)
= I kl

where the standard Euclidean vector norm is used. In view of the directional N

dependence of the gain it is only natural to ask which directions yield the

largest and smallest values of gain. This question is answered using the

singular value decomposition (SVD) [37-39]. This canonical form of a matrix

is given by (dropping the functional dependence on s
0

L VUH • (6.9) -

A complete discussion of the SVD is contained in Appendix B. A summary is

given here for the case in which the singular values are distinct. The

singular values of L are given by the nonnegative square roots of the eigen-

Hnnvalues of L L. It is assumed here that L(s )_, n n : thus, these eigenvalues0

are identical to those of LL H. (The symbol L His read "L-Hermitian' and is
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the complex conjugate of the transpose of L.) The right singular vectors of

L are the columns of U and are the eigenvectors of LHL. The left singular

H
vectors of L are the columns of V and are the eigenvectors of LLH . Assuming

that the singular values are distinct, the right singular vectors are unique

up to multiplication by a unit magnitude constant e . The left singular

vectors are then uniquely determined from the relation

Lui - i vi . (6.10)

Note that choosing a different right singular vector

ja
ui -e ui  (6.11)

implies that the new left singular vector is given by

v=eja v
V e v . (6.12)

It is common to order the singular values so that

l > 2 >> >0 (6.13)

and to define I
Sa 1  ,a an  (6.14)

- n

The singular values and vectors have many useful properties which they

inherit from properties of the eigenvalues and eigenvectors of Hermitian

Hmatrices. For example, the matrices U and V are unitary: UU = I, VV = I.

Thus, the sets of right and left singular vectors form an orthonormal basis

for Cn. The singular values possess the following min-max property

[37-391:

'o '. " . . - , ." " . , ' " " - ",. _ . : .,_ , " ' " . ." ." " " . - .
'

> . . .



0*O 126

ILuI
,i min max Tl- dim i=n-i+l (6.15)

E.. uEO

* The minimum in (6.15) is taken over all subspaces of a of the appropriate

dimension while the maximum is taken over all nonzero vectors within the

--- given subspace. Thus, in particular,

ILul 2
a(L] " max -j- IL 2 (6.16

uGCn 2
U00

and,'.'."IL u 1 2" 
-

[L] - min (6.17)
uG Cn Tu2
u#0

If det L#0, then

;.- alL] - l(6.18)

Thus, at each frequency,the singular value decomposition gives the directions

of the inputs to the system which are multiplied by a canonical set of gains,

the values of those gains, and, via (6.10), the directions of the resulting

outputs. Finally, the above discussion shows that letting L vary as a

function of s causes the singular vectors to vary in accordance with the

min-max principle (6.15).

AA
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6.5. Phase in SISO Systems

The value of a scalar transfer function is given at a specific

frequency by its gain and phase. The concept of gain has been generalized to

matrix transfer functions as described above; however, the concept of phase

has presented more difficulty. In order to arrive at a useful notion of

S-phase in anMIMO system it is instructive to examine the different ways in

which the term phase is used in SISO systems and focus on those which are

most relevant to feedback design. To do this, consider the way in which

scalar signals interact when added together.

Suppose one is given two nonzero scalar exponential signals with

the same complex frequency:

u 1 (t) = ceSot

- and (6.19)

u2 (t) = eSot

The phase difference between these two signals may be uniquely

defined (modulo 21) as

A= c2 cI  (6.20)

The importance of the phase difference is that it governs how the signals

interfere when added together. This may be seen from

u (t) + u2(t)l exot Ic1 +

eXot /ic 2 c2 K 2e
= 1 + 2Re c (6.1)

eXot /!C22 + Ic + cS
e .' + 2jcli) 1 Cos '

cl~ +-Ic
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For example, if the phase differeuce is (2k + 1)7r, k an integer, then the

signals interfere purely destructively and

lul(t) + u2 (t)l - et IclI - I. 2l (6.22)

If the phase difference is 2k, then the signals interfere purely codstruc-

tively and

lUl(t) + u2(t)I - eX1t[IclI + Ic2j] (6.23)

If the phase difference is not an integer multiple of 7r, then the magnitude

of the sum of the two signals is bounded below and above by (6.22) and (6.23).

From (6.3), equations analogous to (6.21)-(6.23) also hold in the frequency

domain; i.e.,

lUl(s) + u(s)l /ic112 + Ic2 1
2 + 21clilc 2 [ cos AO (6.24)

0

The importance of the relation between phase difference and signal interference

in feedback systems should be obvious from the definition of e(s) in Figure 2.1.

Note that it is possible to compute the phase difference

between u1 (t) and u2 (t) by first computing the phases of ul(t) and u2 (t)

individually and then subtracting. First, define

e)~u(t) 4 =

and (6.25)

62 ,u2 (t) - =c."'.t-O 2

ill !I

.. "ZI
4.•",
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This definition leads to another way of representing the signals:

Ul(t) lcllest+e1

(6.26)

u2(t) Ic2 leSot+e2

Thus, the phase difference between two signals may be defined in two

equivalent ways - either from (6.20) or from

e e2 -e 1  (6.27)

Note, in particular, that the phase difference between the two signals is

invariant under rotations of the coordinate system in the complex plane

used to measure the phases of the individual signals; the phases of the

individual signals are not invariant, however.

6.6. Phase in MIMO Systems

For vector signals no standard definition of phase or phase

difference exists. The possibility of such definitions is studied

mathematically in Chapter 10. A reasonable approach based upon physical

*considerations seems to be to generalize the notion of phase difference

by considering the way in which two vector signals.interfere when added

n
together. Thus, consider (6.19) with c1 and c2 E 

n  The analogue to (6.21)

is (using Euclidean vector norms):

1lu(t) + u2(t)I - exot /I C1c2 + jc212 + 2Re c2 c 1  (6.28)

., ". . . "-. . .. .* -. - - - . * .,. . .. . *. -,. - , - .... . .. ..- - - ,i
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Equation (6.28) shows that the interference of ul(t) and u2 (t) is governed

by the term Re c HC Defining

e C 2 H c (6.29)

and recalling the definition of the angle between one-dimensional subspaces

of Cn , (6.28) becomes

Hlu(t) + u2 (t)j = exoL Cl + 0c212 + 21cliIc 2Dcoso cose (6.30) §

and u Comparing

where 0 is the angle between the subspaces spanned by uI and u2.

(6.3) with (6.21) reveals that the interference between two vector signals

depends upon the angle *. If the two subspaces are orthogonal ( 2"=), then

lu(t) + u2 (t) = eXOt /11 2 + Ic212  (6.31)

Thus, in this case the signals do not interfere at all. If < 7i/2, then

interference can occur; for purely constructive interference

lUl(t) + u2(t)I = lUl(t)l + lu2(t)l (632)

and for purely destructive interference _

lul(t) + u2 (t)l fHUl(t)l -1u 2 (t)1l (6.33)

it must be that the two signals lie in the same direction (s- 0). In

addition,8 2k7 is required for (6.32) and 6 = (2k+l)7 radians are required

for (6.33). If 0 < 0 < 1/2, then interference takes place between one

signal and that component of the other signal which lies in the same

direction.

-.. . . . . . .... ...- , ,., . ei -. *p.'
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The preceding discussion suggests that a natural generalization

of phase difference to vector signals is given by the angle 6 which determines

how the signals interfere. If the signals lie in orthogonal directions, then

e is undefined. This is only natural since signals in orthogonal directions
.

cannot interfere.

Now that a definition of phase difference between two vector signals

has been proposed, does there exist a definition of the phase of a vector

signal? One way to attempt this would be to fix a vector wC n, e.g., one

of the standard basis vectors, and then define the phase of a vector signal

as (compare with (6.25))

phasefu(t)] A wHu(t) (6.34)

t 0

This definition could be used to define the phase of all vector signals in

directions not orthogonal to that of w. Computing phase difference between

two signals u1(t) and u2 (t) using (6.34) would thus be identical to computing

the phase difference between the components of u (t) and u2 (t) lying in the1 2

direction of w. By defining

A
M Hu6, Ai u w t) .,

t=0

and (6.35)

6 2 A wHu 2(t) I-

i t= 0

a measure of phase difference is given by

L 1
6=6 2 - i . (6.36)

p

. . .- . . .. . . . .' . ..-, ... . .. . ., - . , .- ,; , . , " . .- , . - - , .-



-. - i ---. . . . . . . . . . . -. -v . ;; --~'.'" . . . . . . .,

132

This definition will not, in general, yield the same value of phase difference

as that given by (6.29) and, in addition, does not have as nice a physical

interpretation. Nonetheless, this definition of phase difference will be

useful in later chapters.

The natural definition of phase difference (6.29) will be found

useful in studying properties of MIMO feedback systems. The relation

between (6.29) and matrix transfer functions is now explained. From (6.5)

it can be seen that the phase difference between an input (6.1) and the

resulting output of the system whose transfer function is given by L(s) is

given by

.(so) M 4uH(t)y(t)
Mf 4 H() sO u(t) .(6.37)

". . The angle between the direction of the input and that of the resulting

output is given by

IH

juH(t)y(t)I
cosO(so = Iu(t) IL(s )u(t)u

juH(t)L(s )u(t)lIu(t)I IL(s0 uu(t) .

Given an input of the form (6.1), with k a unit vector, the quantity

SL(S oke cos (s oeS (s )

k L(s )k J~ k

thus relates the gain of the system in the direction K, the angle between the

directions of the input and the resulting output, and the phase difference

between the input and output.
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Given a matrix ME nn the set

{uHMu 2  1 , u Cn} (6.39)

is defined to be the numerical range [401 of the matrix. This set has been

- identified as important in system theory. For example, a necessary condition

for (strict) positive realness [41] of a transfer function matrix is that

the numerical range of L(s), Re[s] 0, be confined to the (open) right half

plane. Thus, in order to be strict positive real, a transfer function matrix

must have the property that l el < !-and -for all inputs and all s with

Re[s] > 0.

In the next section two parameterizations of matrix transfer

functions will be developed. These parameterizations will use angles and

phase shifts as defined in this chapter.

., ... °
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CHAPTER 7

CHANGES OF BASIS AND PARAMETERIZATIONS
OF MATRIX TRANSFER FUNCTIONS

7.1. Introduction

The purpose of this chapter is to introduce a change of basis in

- the spaces of inputs to and outputs from a system described by a transfer

function matrix. As discussed in Section 7.2 this leads to transformed open

" and closed loop system matrices displaying information contained in the

singular value decomposition (SVD) of the open loop transfer function.

In particular the angles between singular subspaces and the phase differences

between singular vectors, quantities introduced in Chapter 6, are displayed.

Using these parameters lower bounds on a[S(jw)] are derived.

Implications on the possible values of these parameters given that an upper

bound on a[S] is satisfied are discussed in Section 7.3. In Section 7.4 some

useful parameterizations for transfer functions of two-input two-output

systems are discussed.

7.2. A Change of Basis

Let the singular value decomposition of the open loop transfer

nxnfunction matrix, L(s)-E , be given by (suppressing dependence on s):

"*" L - VZUH (7.1)

with singular values

Z diag[ 1 ... n] (7.2)

left singular vectors

"2"-4
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V [vI  n... jv] (7.3)

and right singular vectors

U [u u (7.4)

In contrast to convention the singular values are not necessarily assumed to

be numbered in decreasing order of magnitude. The singular values and vectors

must still satisfy the equation,

Lui " oivi , (7.5)

however. Degrees of freedom available in selecting the singular vectors are

discussed in Appendix B.

*It will be convenient to write the spaces of inputs and outputs

in the orthonormal basis for n furnished by the right singular vectors.

(The left singular vectors could also be used for this, of course.)

, With this change of basis the matrix L is transformed into:

L~UHVZ (7.6)

Note I - ULUH  (7.7)

and L=uRLu (7.8)

The sensitivity and complementary sensitivity functions become

:S ( I + L]l

(7.9)

[I + uLZ]



136

and

, = [I+] L

(7.10)
= -[I + AZ-. UHVE

. and are related to S and T via

s = uguH (7.11)

and

T - U1 . (7.12)

The transformation from L, S and T to L, S and T just presented

is both a similarity transformation, preserving the eigenvalues of the

matrices involved, and a unitary transformation, preserving the singular

values. The former fact implies that absolute stability properties of the

closed loop system are preserved since these can be assessed from the

determinant [42] or the eigenvalues [431 of S(s) and T(s). The latter fact

implies that information about closed loop system properties, such as

stability margins and disturbance response, is preserved.

Writing L in terms of the individual singular values and vectors

(7.2)-(7.4) yields

U"V"zS.H H H
uv a u vo 1 nn uv

H H

u Vl u v2 a

S(7.13)

u.......uv
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This expression is appealing in that it displays the angles between singular

subspaces given by

cos luiHvil (7.14)

and the phase difference between left and right singular vectors defined

by

ei  4uiHv i  (7.15)
i .i

(Physical interpretations of and i are presented in Chapter 6.)

M Note that if the singular values are distinct, then all the are

uniquely determined and 0 < i< /2. If r r/2 then the 6, are defined

and uniquely determined (modulo 2w). If there exist singular values with

multiplicity greater than one, then the directions of the corresponding

singular vectors are no longer uniquely defined. Given a choice of right

singular vectors, however, the left singular vectors are uniquely determined

vis (7.5). Thus, it is possible to define and 6. using this choice of1

singular vectors.

The transformations (7.6), (7.9) and (7.10) are useful in relating

properties of the open loop singular values and subspaces to those of the

closed loop system. This relation will be studied in detail in Chapter 8

for the case when there exist large gains in some directions and small gains

in other directions over the same frequency range. A relation which holds

for the general case is presented in Section 7.3.

p

• . -"
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7.3. A Lower Bound on Closed Loop Sensitivity

In this section, a lower bound on a[S(jw)], the largest singular

value of the system sensitivity function, is obtained in terms of the

open loop singular values and the parameters and 0 from (7.14) and (7.15).

First, a more general relation is obtained using the numerical range of

L(jw) defined in Section 6.6.

From the definition of the sensitivity function (Chapter 5) and

.- various properties of singular values, it follows that (again suppressing

dependence on s):

112 - ~[S]

IS11
_-{ = o[(I + L)-I

--'[I + L]

1 (7.16)

'S112 min (I + L)w12
wE CnII w

nFrom (7.16) it follows that given any unit vector wEC ,a lower bound on the

magnitude of the sensitivity matrix may be obtained from

11 S11 2 1 (1 (7.17)

The lower bound (7.17) can be written as

[:::i!i ll 2 -> (7.18) "

IS2>2H
Vl+ IILw12 + 2Re[w Lw]

S.. .. !
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Now, recall wAw is an element of the numerical range of L (Section 6.6).

Define

" " Lw i 2 (7.19a)

LWLw -(7.19b)

H
* = arc cosiw zi (7.19c)

e 4 wHz (7.19d)

Then, (7.18) becomes

Isi 1
IS22 (7.20)

+p 2p cosocos"

Now, if * 0, i.e., if w is an eigenvector of L, it follows that pe is an

"* eigenvalue of L and the relation between the gain p and phase difference 6

is exactly as in the case of SISO systems. If 0> 0, however, the relation

is no longer as in the SSO case. Apparently, pej e - 1 can occur without

. necessarily causing a[S] to become unbounded or even large, provided that

€ is sufficiently large. Of course, inputs in directions other than those

given by w could produce a large output from the sensitivity function.

Nonetheless, (7.20) could be useful in showing that certain open loop system

properties necessarily lead to poor feedback properties. Moreover, (7.20)

can be used to study necessary properties of systems which satisfy bounds on

a[S], e.g., optimal linear quadratic-state feedback regulators designed under

s. certain assumptions (see, e.g., [4, p. 13]).
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Note that (7.17) can be evaluated for w,a right singular vector

of L. In this case (7.20) becomes

1s1 2 > 1(7.21)
2 + + 2a cos4 i cosei

This bound is useful in studying the relationship between the canonical set

of open loop gains given by the singular values and feedback properties.

For example, if S2< 1, then it follows that, for each i,

ao + 2cosi cos e  > 0 (7.22)

One possible application of this bound would be to study properties of

linear quadratic-state feedback regulators, for which under certain

assumptions (7.22) is guaranteed to hold. Analysis of (7.22) or an analogous

bond obtained from the more general inequality (7.20) could lead to new

interpretations of the guaranteed properties of these designs.

7.4. Parameterizations for Two-Input Two-Output Systems

In this section, two useful parameterizations of transfer function

matrices for two-input two-output systems are described. Such parameteriza-

tions are undoubtedly also possible for larger systems. The emphasis in this "

.I thesis, however, will be to ascertain whether useful insights are obtained

for simple cases. If useful results can be obtained for simple cases, then

this will motivate further work on larger systems.

- % *
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Suppose W is a unitary matrix in C 22and suppose further that the

diagonal elements of W are nonzero. (It can easily be verified that w1 =0,

if and only if w -0.) Then W can be parameterized as

22.

FcosO e ~ -1si12 ejleje 1 (7.23)

Lsino e e joo

where E [0,'rr/2) and the e and t~can be chosen to lie in the interval

(-7Trr. (Note these parameters are not the same as those of (7.14)-(7.15).)

This parameterization may be used in the SVD (7.1):

L =VZUH

2 1

Fcosp e jevl -sino e-jlv e jV2 10Fa 0

(7.24)

Lsin~oejv ejl cosO eJv i a )

coscpu e jel-sin ey~ e j]

rsino e eiu 1 COSc eJU2

Note, that (7.24) contains 10 parameters; this is apparently too man; since

eight numbers suffice to specify a 2 x2 complex matrix. Inspection reveals

that the value of L depends only on the quantities
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-vi i-1,2 (7.25)

,* ., Thus (7.24) can be written

L VZUH

["cOSv -sinO v e-j'v [ aI e j l  0 1
1 (7.26)

sinev e 
J v  coso v  0 2 e j e2

-j Pu H "
L""o u -sinu e 1

j u
sinou e coso u

From (6.35)-(6.36) it can be seen that l is the difference in phase between

the components of u and v1 lying in the direction of the standard basis

vector eI = [ Thus, Oi does not measure how an input in the direction

uI will interfere with the resulting output which is in the direction vI.

Rather determines how the indicated components of uI and vI interfere.1 1

Similar remarks can be made about the meaning of 6 using the basis vector•0 2  F"2

The angles u and u indicate how an input written in the standard

basis is multiplied by the singular value gains. Similarly, the angles &v

and -v indicate how the resulting output is distributed between the standard

basis directions. Thus, although the phases e do not have as nice an

interpretation as those given by A-ui vi, the corresponding parameterization

• --
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of the singular subspaces is useful for relating properties of the SVD

to design goals stated in terms of the physical loops of the system.

Parameterizations can also be obtained for the matrix uv in

(7.6), the expression for L. H v t~t may be parameterized

as

H H
u v u v11 1 2

UHV.
H H

u 2vI u 2v2

"-cosO ej 1  -sino e e 1
(7.27)

sin ej ejll coso ej62

VL _j

where coso = 'uiHvil is the cosine of the angle between each set of left and

right singular subspaces; O [0,,T/2). Since D < -,/2, the phase differences

" = 4uiviare defined and may be chosen so that E (-t,f]. The quantity
i i

p is not well defined, however, due to a lack of uniqueness in the choice of

singular vectors (Appendix B). Thus it may be assumed that P 0. To justify

this, recall that if a1 # 0, there exist well-defined one-dimensional right

singular subspaces il and U2 C . The right singular vectors may be chosen

as any unit vectors within these subspaces; the left singular vectors are

* then completely determined from (7.5). Suppose that for a particular choice
R

ulEU it so happens that 1#0; i.e., 4u v # 1  Then choose u = e-J' u1 1 2 1 V 1
(which from (7.5) implies 1 e- J it follows that Xu a and , = 0.

fo Av2 1
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Finally, (7.27) can be used in (7.6) to obtain

L= UHVE[coso -sino] a e~ je1  0

= sinO coso 0 a 2 ej 82 . (7.28)

This transformation of L displays useful information concerning

how inputs to L in the direction of the right singular subspaces interfere

with the resulting outputs when added together.

, Although there are only five parameters displayed in (7.28) eight

parameters are still needed to completely specify the matrix. The reason

is that three parameters are needed to specify the basis of right singular

vectors. Ordinarily four parameters are needed for this; e.g.,i eul ju ju
cosu e -sinu e:i e(U u a(7.29)

sin u ej ' ejOul coscu ejeu2

It will be recalled, however, that U was adjusted to make the parameter .
U 1

in (7.27) equal to zero. On the other hand, fixing e =e 20 implies that
u 1  u2

p is well determined. Thus in the former case, L is completely determined

by

/e{ 2 1 , €' -u' ' , u2} (7.30)
1' 2' 19l 29 U u u2_

while in the latter case L is completely determined by

cs{ a2 , 1 e2' 0 ' *'u' au }  (7.31)

29 1) e '

. A .. .
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The five parameters in (7.28) appear to be the most useful in

approximating feedback system properties in terms of open loop system

parameters. However, as the discussion of structured design specifications

for MIMO systems showed (Chapter 5), information about the directions of the

right singular subspaces is important in stating design goals. Thus both

-" parameterizations display valuable design information.

L
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CHAPTER 8

SYSTEMS WITH HIGH AND LOW GAINS AT THE SAME FREQUENCY

8.1. Introduction

The purpose of this chapter is to provide approximations to the

sensitivity and complementary sensitivity functions of an MIMO feedback

system in terms of properties of the open loop transfer function. The case

considered is that in which, over some frequency range, this transfer function

has much higher levels of gain in some directions than in others. Motivation

for studying this case was provided by the discussion of structured distur-

bance inputs, sensor noise, and modelling uncertainty in Chapter 5. The

assumption of such structure naturally leads to systems whose open loop

transfer function has, at the same frequency, high levels of gain in directions

for which good performance is desired and small gain in other directions to

- -"provide stability robustness and/or sensor noise rejection. An additional

motivation is provided by the observation that a given plant may naturally

possess different bandwidths in different directions. To facilitate design of

a compensator, it is useful to know how this property affects the closed loop

system. Finally, when the plant has an unequal number of inputs and outputs,

one of the two open loop transfer functions, L = PF or L= FP, will

necessarily have less than full rank. Hence, such a system will also

necessarily have different bandwidths in different directions.

Portions of this chapter have appeared in [29] and [44] and will

appear in [45].

*. ' •

. . . . . ..-. . . . . . . . . . . . . . . . . . . . . . . --
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n 8.2. Approximations to S and T in Terms of Open Loop System Properties

It is desired to study systems which, at the same frequency, possess

much higher levels of gain in some directions than in others. Thus it is

convenient to partition the singular value decomposition (SVD) of the open

" loop transfer function as (suppressing dependence on the complex frequency

variable s):

Lm [Vi V2 [E: 0 ]U H]

or (8.1)

L~1 ~UH +v~uH
.- L V ZI UI + V2E2U2."

where [E1 >> G[2 and with V1, U1enxk, V kk

• -) and E E(nk)(nk). Inputs to the open loop system lying in the subspace2

U. (the column space of Ui) are amplified by the level of gain given by the

singular values of Ei and appear as outputs in the subspace V i (the column

space of Vi). This partition suggests that L be referred to as consisting

of a high gain subsystem (VI UI) and a low gain subsystem (V2E2U2 ) (with

the caveat that the partition need not correspond to physical subsystems).

It is convenient to write the spaces of inputs and outputs in the

basis of right singular vectors; i.e., the columns-of U. The matrices L and

-* S written with respect to this basis are given by

,, UHLU

(8.2)

.UHVE.-5

/ ..- '..- - .- ..- -. - - .. . -. . . . . . . . . -.-.. .-. . 4 -_ .- .. --. . . . . . . . - . - -.
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and

- u~su

. I+HV)1(8.3)
"_- . . (I + LHVE) -

Since L and S are related to L and S by a unitary transformation, the singular

values of L and are the same as those of L and S. Note that (8.2) and

(8.3) are also similarity transformations; thus eigenvalues are also preserved. 1

This fact is appealing since various system properties quantified by singular

,* values and eigenvalues are preserved under the transformations.

.= Rewriting (8.2) in terms of the ?artition (8.1) yields

"l~ l1 1 2 2

' 1 1 2 2 ] 
(8 .4 )

The matrices U give a measure of the alignment of the subspaces L. and
ij 3.

V. (the column spaces of U and Vi) The singular values of uiHv. are the
" -.

cosines of the canonical angles between the subspaces L1i and V. (see
j

Appendix D for a discussion of these angles). The canonical angles '.

generalize the usual notion of angle when the subspaces are one-dimensional. 7

If all the canonical angles are equal to zero then Ui. = V.. If all these

angles are equal to 1/2 then U = c, the empty set. Similarly the sin-
i 1.

gular values of U HV i#j, are the sines of the cinonical angles. In system
i j
H

terms the matrix U V indicates how much of the output of the transfer func-
ii

tion L lying in the subspace 13 is due to inputs lying in the subspace Li. If,

at some frequency, U - 0, i#j, then the high gain and low gain subsystems

are decoupled (at the given frequency). Note that in terms of the feedback

. ...°
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system of Figure 5.1 this means that the output of the high gain subsystem is

fed completely back to the input of this subsystem. A similar statement holds

for the low gain subsystem. If U 0Hv 0, i#J, then part of the output of the
j i I

U high gain subsystem is fed back to the input of the low gain subsystem (and

conversely). The effect of this behavior upon the sensitivity and complemen-

. tary sensitivity functions will now be examined.

- The transformed sensitivity matrix (8.3) may be written in terms of

the partition (8.4) of L into subsystems as

S = + v(8.5)

L 2 1 12 2 2

Using a standard formula for the inverse of a partitioned matrix, the trans-

formed sensitivity function can be written as (assuming det A#O and

det C#O):

A + BC D -BC

-= (8.6)
_C - D C -

where

A I+ U Hv I  (8.7a)

Ll R H - 1 H V C

i:"B = (1+ u1 HV1 E1 )- U1 V2E2 (8.7b)

..C -  E HU v(I+u VE - U E2 (8.7c)
22 2 2 1 1 1 1 )1 1 2 2

D U H 2 (I+UWI) . (8.7d)
2 11 1 11

If the gain in both subsystems is sufficiently greater than one,

then S- 0 and T " I. If the gain in both subsystems is sufficiently small,
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9 .

then Sf I and T0 0. These approximations were discussed in Chapter 5. The

following theorem yields an approximation to S and T when the gain in one

subsystem is sufficiently large and the gain in the other subsystem is

sufficiently small.

In the following it will be assumed that none of the canonical

angles is equal to it/2; i.e., it is assumed that det[UiHVi] #0. An

analysis of this special case can be performed using the pseudoinverse of

Ui Hvi; however, the resulting expressions are complicated. In Section 8.4

the analysis of this case is performed for two-input two-output systems.

Theorem 8.1: Assume det[U 1HV]# 0. Then, if

[z >> [(UlHV )-1 (8.8)

and
-[ 2  << o[v2u (8.9)

the sensitivity function and complementary sensitivity function are

approximated by the following equivalent expressions:

U 2 (V 2U 2 1- v 2 H (8.lOa)

S U2 (V2H U2 )-1 (V2HU H +H UH (8.lOb)

V (V U )(V u ) -lv + v (8.10c)

A caveat is in order concerning approximations (8.10)-(8.11) as well as those
in the remainder of this chapter. For exrmple1 (8.10) does not imply that S
is singular, rather, just that 3[S-U 2 (V2 U2)-lV 2H] may be made arbitrarily
small. How small is "small enough" depends on the specific application; e.g.,
..he magnitude of the disturbances to be rejected. Similarly, the amounts by
which the gain Z[Zl] must exceed 3[(U HVl) - I ] and by which the gain 7([2] must
be below Q[V 2HU2] in order to insure 18.10)-(8.11) hold will depend upon the
application. Again, similar remarks hold for the other approximations in this

chapter.
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H -1uH (8.lla)
V (U1 V) U1 (.la

T U2 (u2 Hv1 ) (ul HV) -u1 H + UIUIH (8. llb)

V1 (U1 HVll- 1 HV2 )V2H + V1 V1 H (8.11c)

Proof: See Appendix E.

Expression (8.10a) shows that the response of the feedback system

to disturbances lying in the subspace V1 (which contains the output of the

* high gain subsystem) can be made arbitrarily small. Similarly, the distur-

bance response is confined to the subspace 112 (which contains the input to

the low gain subsystem). The magnitude of the sensitivity function is

co1 (8.12)
Cos a

, where t is the largest canonical angle between the subspaces U2 and )2 .

Thus in order that the system response to disturbances not be excessively

*large it is necessary that the high gain and low gain subsystems should be

sufficiently decoupled. Expression (8.10b) shows that the disturbance

response of the system consists of two components. First, disturbances in

the subspace U 2 are fed directly through to the output of the system. This

is analogous to the SISO case for which ILI<<I implies Yd d. Second, ..

disturbances in -he subspace U1 are amplified by the system; the resulting

output lies in the subspace 12. The amount of amplification is given by the

singular values of the matrix (VH U2-(vu), which in turn are equal to

the tangents of the canonical angles between the subspaces U 2 and ,2. This

behavior (which has no analogue in SISO systems) is apparently due to a
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component of the output from the high gain subsystem being fed into the input -

of the low gain subsystem and conversely. Equation (8.10c) may be used to

.. decompose the disturbance response in terms of the outputs of the high and

low gain subsystems.

Remarks similar to those above can be made about the system

response to sensor noise. This may be accomplished using approximations

(8.11) to the complementary sensitivity function.

Consider now the problem of structured sensor noise posed in

Section 5.4 and the resulting design specification (5.38). Suppose the

attempt is made to satisfy this specification by requiring the gain of the

system to be small on M , the subspace of the input containing the structured
S

component of the sensor noise. This may be stated by requiring U2  N and
2 s

aE [2]<<l. Then approximation (8.11a) shows that this procedure does indeed

prevent n, the structured component of the sensor noise, from producing

a response in the system output. Moreover, maintaining large gain

([E]>>Il) in the orthogonal subspace as-U insures that the disturbance
-1 s 1

response will be confined to the subspace U

In order, however, to prevent the system from amplifying disturbances

and sensor noise in some directions with greater than unity gain, it is neces-

sary that the interaction between high and low gain subsystems be small.

Thus in addition to the requirements [2]<<JI a2 N and a ]>>l it is

necessary to require V2 -U Hence, the use of both high and low gains in a

design can achieve some of the feedback properties expected from the SISO

case, but only if the subsystems are approximately decoupled.

If the gain in both subsystems is sufficiently greater than one,

then, as discussed in Section 5.3, the approximations SzO and TI hold.
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When the gain in one subsystem has been "rolled off" while that in the

other is still large,then Theorem 8.1 may be used to approximate feedback

properties. Recall the condition for the low gain subsystem to be rolled off

is G[E2]2<< _[V 2 U2 ] < 1. This condition guarantees that the matrix

V2 2 +  H2 V2 2" Note this is a more stringent requirement than the SISO

analogue which required that ILIl<< in order to guarantee 1+ L l.

This discussion motivates the investigation of whether a frequency

region analogous to gain crossover frequency in SISO systems exists. Presum-

ably such a region would exist for crossover of each of the low and high gain

subsystems. This is now investigated.

Lemma 8.2: Assume det[UIHVl] 0 and det[V 2HU2 + 2# 0. Then if

- H -1Z a[El]>> a[(UI V1)-I ]  (8.13)

the transformed sensitivity function (8.6) is approximated by

-(U HV)I - (u HV 2)z2(V2HU2 
+

2 )-1 (v2 u)] (8.14a)

'-S1 -EI1I(UIHVI)-I (UIH2)z (V2Hu2 + Z 2)I(V2H u2 (8.14b) i-lU.. - H H -1

- -(v2 - (v)uI(°12 1 11 1 2 2 2 U2 + 2) ( 2 U2) 81

21 2 2 2 1(8.14c)

$22 2 2 2' (v 2 u2 ) (8.14d)

Proof: See Appendix E.

Theorem 8.3: Assume det[UjV1 ] $ 0 and det[V 2 H 2 + z # 0. Then if

:[Z 1 is sufficiently large the sensitivity function and complementary

sensitivity function are approximated by the following equivalent

expressions:

.-.. ,]

-s ---- -~ -- -- . - -. . ---------------------------------------------------. . .
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u 2  (8.15a)

) U2 CV2 % 2 +r 2)-1 (L2 1)U H + (V 2 HU2 )U2vH (8.15b)

IV (V + (V i 2 +)U2H (8.15c)
2 22 + 1(v1 2)( 2 2  2) v2

V2(U2HV2) 1 H + U(VH2 ] U (V HU 2 + 2-V (8.16a)

T v V1V H + (-V1(V1HU2) + V2E2I(V2HU2 + Z2)vH (8.6b)

UU U U H H)r V )
UU1 + U222I2 + Z2)-I[(V2 1U1 + E 2U2 ]  (8.16c)

Proof: See Appendix E.

Lemma 8.2 shows that the frequency range for which there exists i, -

1 < i < n, such that [Z2] < a[V2H < '[ 2], plays a role analogous to

scalar gain crossover frequency. Near gain crossover frequency in SISO systems

knowledge of open loop gain is insufficient to allow the approximation of

feedback properties. Similarlyat frequencies for which the conditions

[ 2I<< a[U 2 'IV2 ] (8.17)

and

_[L2 ']>>[U2 2 2  (8.18)

both fail to hold knowledge of open loop singular values does not provide

sufficient information to determine feedback properties. For SISO systems

the magnitude of the sensitivity and complementary sensitivity functions are

determined by open loop phase. Some generalizations of this were presented

in Section 7.3. Further generalizations are given later in this chapter.

V- .- ..-.k ' " .-, ' ' ' " " ' • ' ' " " " "
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Note that the magnitude of 2[(V2 2 + E2 )-] is related, via

(8.14a,b), to the level of gain required in the high gain subsystem to

insure that the component of the disturbance response lying in the subspace

U is small.1

The following lemma and theorem are a counterpart to Lemma 8.2

and Theorem 8.3 for the frequency range over which the high gain subsystem

is being rolled off.

Lemma 8.4: Assume det[U 2RV2] 0; then if

a[ 2 ] (u 2Hv2 )-l(.9
[F 21 << _G[( 2 -i]) (8.19)

the transformed sensitivity matrix (8.6) is approximated by (assuming the

indicated inverse exists):U
S [I+UIHV I - (URVE) (UVEI)1-1 (8.20a)
11 1 1 1 1 22 21 1

-[I+U HVlE - (U 'IV2 E) H -l (U Hv ) (8.20b))( vL-

(uIHV2-2 (8.20b) S 21 -(U 2 1 1z 1)[I+ U 1  1 1 - (U1 2 )(U z  1 ) 1
-  l (8.20c)

2 I + (U2HVIz l ) [ l + u l  - (UIV2z (U2HIVI (UIV27 (8.20d)22 2 1 1 1 12 2 2 ll7 1 -2

Proof: See Appendix E.

Theorem 8.5: Assume det[U2H2] # 0 and det (I+UIV ~ l ) # 0. Then if2 2 11 1

is sufficiently small, the sensitivity function and complementary

sensitivity function are approximated by the following equivalent expressions

L

............................................................
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U2(v 2 u2 ) -v 2  + V(U 1 HV1 )- (I+uIHV11E1)- uH (8.21a)

S U2U H + [U1 -U 2 (U2 HV)z](I+UIHV r )--I H (8.21b) U.{
22 1 22111 11 1 '

V2V2
H + VI(I+ EIUIHV 1 -I[vIH - E1 (UIHV2 )V2 ] (8.21c) 

, Vl1(I+UiHV1 El) -l 1 H (8.22a)

T V Z (I+UIHV1 zI)-I[(U1 HV)VIH + (UIHV 2)V2 
H  (8.22b)

V U[U1 (UIU I ) + 2 (U ] M l(I+ HVIFI ) - I U H (8.22c) .-

[U(1  1 2 2 1 1 ( 1  1 1) 1

Proof: See Appendix E. --

Theorem 8.5 shows that the frequency range for which there exists

i, 1 < i < n, such that _[ 1 < i((UIHVl)-I] < a[. 1], plays a role analogous

to scalar gain crossover frequency when the high gain subsystem is being

rolled off. Comments similar to those following Theorem 8.3 can be made

concerning system properties in this frequency range.

The approximations to the sensitivity and complementary sensitivity

functions given by Theorem 8.1-8.3 may be used to obtain approximations to the P

singular values of these matrices. Recall that U and 33 are k-dimensional

nsubspaces of cI and 1I2 and 0 2 are (n-k)-dimensional.

From (8.10a) it follows that k singular values of S are small,while

(n-k) singular values are approximated by

IS] . cOS i i=l,...,n-k (8.23) J

Cos-a
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where {ai ; i=l,...,n-k} are the canonical angles between the subspaces

2 and 1) Similarly, from (8.11a) it follows that (n-k) singular values

of T are small,while k singular values are approximated by

C [T] ft C i-l,...,k (8.24)

ii• "where {6i  i=l,...,k} are the canonical angles between the subspaces U1

and 1I. Assume that n-k < k. Then from Appendix D it follows that 2k-n

nonsmall singular values of T are approximately one while the remaining

nonsmall singular values are approximately equal to the nonsmall singular

values of S. A similar statement holds if n-k > k except that n-2k singular

values of S are approximately one.

From (8.15a) it follows that the (n-k) nonsmall singular values of

* S are approximated by

o[S] 2 a(V 2 U2 + Z)-I i1l,...,n-k (8.25)

The approximation of the singular values of T is more difficult since the

approximations (8.16) are not in the form of a singular value decomposition

as are those in (8.15). However, some useful information may still be

obtained. For example, let the singular values of S and T be numbered in

order of decreasing magnitude. Then, from the identity T+ S = i and Theorem

6.6 of Stewart [37], it follows that

-oi[s] - i[T]l < . (8.26)

In particular, when ai[S] is large so is ai[T].

L One alternate approximation to the singular values of T may be
iH

obtained from (8.16b). Since the nonzero singular values of V V Hare equal

to one it follows that i [T] is large if and only if
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* i{[-Vl(Vlu 2 ) + V2 2 (v2 Hu2 + E2 -v 2H

is large. In this case

a (T] c[ V HU )(VHiU2 + Z ) lj + 02 (CZ(V HU + E )-l 1 (8.27)

This approximation is useful when it is desired to detect large values off

oi[T], since the approximation is valid exactly in this case. Similar

approximations to ai[T] and ai[S] may be obtained from Theorem 8.5. The

approximation analogous to (8.25) is given by

,[T] ai[Zl(I+UHV l -l (8.28)

Note that ai[S] is large if and only if oi{[ 1 -U2 (U2 'VI)E1] (I+U V1 U1 ) DIl

is large. In this case

IS] [(I +2 U )-Z + 2 [U EI(I+UIHVEI)l 1  
. (8.29)

11 2

8.3. Two-Input Two-Output Systems

The purpose of this section is to specialize the results of

Section 8.2 to systems with two inputs and two outputs. In order to

accomplish this a parameterization of such matrices introduced in Section 7.4

will prove useful.

Consider the transformed open loop transfer function (8.2):

* °
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H H]
"'- Uvil(8.30)

H 2H
LU2v 1a 1 u2 v 2a 2

Assume first that UlH v 0 0. (Since UA is a unitary matrix this is

equivalent to the condition that u2 Hv2 0 0.) Then the parameterization

(7.28) may be applied to (8.30):

"s 0I e1 -sino 02 ej62

e ff .(8.31)

Lsin a1 ejel coso 02 eJ62

3The transformed sensitivity function (8.3) may be written as

•[ 1 d+ 2 2 coso a2 eje2 sinO 1

a ej '1 sine 1 + a ej el cospj

___=_(8.32)

l~o j 2  jOje21i + a2 cosO ej 12 +0 1 ej l (coso + U2 e 2)

r-

The following are specializations of Theorems 8.1, 8.2 and 8.5 to

systems with two inputs and two outputs.

Corollary 8.6: Assume cos # 0. Then if

"1 (8.33)
1 >coso

and
L

a << cos (8.34)
2

. . .

'i 'L ' ... ',.'.-. ' 1- . :.:,'.1 .., 
"

**** 
:- "

. . ."- * 
'

.
'

* .- ." .. . ..; - " -.. *2
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the magnitudes of the sensitivity and complementary sensitivity functions

are approximated by

Gos] (8.35)
coso

1[T o (8.36)
coso'

Proof: Follows easily from (8.10a), (8.11a) and the fact that

"u 1 luH V 11 Iu2 Hv21 coso. a.

Corollary 8.7: Assume coso # 0 and coso + a2 eJi2 # 0. Then if a1 is

sufficiently large the magnitude of the sensitivity function is approximated

by

[s]1 (8.37)
"cost ±+ a2 eJe a

Proof: Follows from (8.15a) by noting

U[U 2 (V2"U2 + z'2)-1VH = 1
"2  u + a

and from

v2 u2 + 2= 2 cosp e -e2 + a21

= cos + a2 eie2l *-;-2

Corollary 8.8: Assume that cos€ # 0 and Ii + cos i eJ~ l #0. Then if

j 2 is sufficiently small the magnitude of the complementary sensitivity

function is approximated by

;o........................"
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K4a[T] (8.38)
1i+ coso O1 eli

Proof: Follows from (8.22a) by an argument similar to the proof of

Corollary 8.7.

From Corollary 8.7 it may be seen that at frequencies for which

0 2 coso it is important to keep 82 bounded away from ±. Thus such

frequencies bear the same relation to the low gain subsystem as gain crossover

frequency does to anSISO system. Similarly from Corollary 8.8 it follows that

at frequencies for which 0 os it is important to maintain 81 bounded

away from t7. Thus for each subsystem there exists a generalization of the

concept of crossover frequency; moreove; at such frequencies the value of a

generalized measure of phase difference must be kept bounded away from ±w in

order to maintain good feedback properties.

The results of Section 8.2 and the Corollaries of this section are

valid only if the canonical angles between subspaces U1 and 11 (equivalently

U and V2) are less than An analysis of feedback properties may also be

performed in this case; however, the expressions are rather complicated. For

systems with two inputs and two outputs, however, the expressions are simple

enough to be insightful. An analogue to Theorem 8.1 is now presented. Note

H H
that the condition det[U 2 V2] # 0 imposed in that theorem reduces to u2 v2 # 0.H 2 2

Theorem 8.9: Assume u2 v2 = 0. Then there exist 'two cases:

(a) If 002 >> 1, then the sensitivity function is approximated

by

S u2 v1  U2ulH + ( 2 ) Uu 2H (8.39)

.4.
'.-................... 2 .
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(b) If a1a2 << 1, then

S(lu 2Hvl)U2U1 H H H (

S I (a-U )u U (a2uI v2 )uu 2  (8.40)

H -j

H
Proof: Follows easily from noting that u2 v2 = 0 implies

1 -uI v2 2

1 j (8.41)

(1 + C1C2)

The preceding theorem shows that if coso = 0 and 1 >> >> 02
12

then a[S] will necessarily be large. In case (a), u[S] - and in case' 02'
(b), C[S] f 01" (This follows since IuiHvjl = 1, i#j.) In either case

feedback properties are poor. This is plausible since, as shown in

Collary 8.6, a[S] becomes larger as the angle * becomes smaller. Finally,

it might be expected that some sort of unusual feedback behavior would occur

when cos = 0. This is plausible since (i) if this condition holds the

outputs of each subsystem are being fed completely into the inputs of the

other subsystem and (ii) the two subsystems have very different properties

in terms of levels of gain. Thus, as a signal travels around the loop it is

multiplied, alternately, by high and low levels of gain. -

For later reference the approximations to G[T] and u(S] given by

• " (3.27) and (8.29) will now be stated in terms of the parameterization (8.31).

From (8.27) it follows that

2 2
(sino) + 0

2 (8.42)
coso + 0 2 eJ62I
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pand from (8.29)

.4 + a (sino)2
[S] i + cos, a1 ejel (8.43)

8.4. An Example of a Multivariable System Phenomenon

In this section an example of a transfer function describing a

two-input two-output system will be given. The immediate purpose of this

example is to illustrate the approximations developed in Sections 8.2 and 8.3.

A secondary purpose is to provide motivation. It will be seen that this

example possesses feedback properties having no analogue in scalar systems.

Developing the theoretical framework necessary to understand this behavior

is the primary goal of this dissertation.

*Consider the open loop transfer function

1.5 x 105 .78

(s + 10) (s .01)2

L(s)

-7.071 x 106(s + .1) .64
3 2L (s + 10) 3  (s + .01)

The gain in the second loop of this system, given by 2'
(s + .01)2

is large until w = .01 rad/sec, and then decreases with a two-pole

roll-off (f40 db/decade). The gain in the first loop is large until W = .01

L rad/sec, and then decreases at a rate of 20 db/decade. The effect on the open

loop singular values is shown in Figure 8.1. The largest singular value

corresponds to the gain in the first loop while the smallest singular value

%-~
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corresponds to the gain in the second loop. In the frequency range over which

01 >> 02 the right singular subspaces are aligned with the standard basis

- directions (Figure 8.2). This fact greatly facilitates analysis of this

example. First the angle 4v, which is a measure of the interaction between the

- two physical loops of the system, may be identified with the angle 0 between

the left and right singular subspaces (Figures 8.3 and 8.4). (Recall 0 can

be interpreted as a measure of interaction between high gain and low gain

subsystems.) A second consequence is that the two measures of phase difference

given by ei (7.15) and e (7.25) are very nearly equal in this example
ii

(Figures 8.5 and 8.6).

The singular values of the sensitivity function are plotted in

Figure 8.7. (The approximation (8.37) is indistinguishable from

O a[S] - a (S] on the scale of this plot.) Note the two peaks of f 8 db each

in a[S]. From Figure 8.4 it may be seen that the second of these corresponds

to a large value of 0, as expected from Corollary 8.6. The first peak is in

the crossover frequency range in which 02 coso; the value of this peak may

be approximated from Corollary 8.7.

This example illustrates some interesting phenomena not present in

Pa SISO systems. If 02 eje2 were a stable minimum phase transfer function with

a two-pole roll-off in the vicinity of gain crossover (e.g., ),then
(s + .01)2

. the value of e would be -179*. This follows from the Bode gain-phase

relation (2.24). From the approximation (8.37) it would follow that

"[S] 2 34 db. Instead a[S] z 8 db. The immediate reason for this may be

seen from Figure 8.5. As the gain in the second loop of this system begins

to roll-off, the phase difference 2 becomes increasingly negative. This

" might be expected based on intuition from SISO systems. Upon reaching -160,
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however, 82 actually increases to -140 in the vicinity of crossover. In

this respect it is as though a phase lead filter were present in the second

loop of the system. On the other hand, if such a filter were present in an

SISO system the 40 db/decade decrease in gain could not be maintained.

It is interesting to note that a phase lead filter is present in

the first loop of the system and that the leading action occurs in the

frequency range over which the unusual increase in e2 occurs. It is difficult -

to see a direct relation between these two phenomena. One can easily estab-

lish, though, that the increase in the gain IL21w)j associated with the lead

filter is responsible for the increased interaction between the two loops of

the system and thus for the increase in 0. It is as though the phase lead

present in the first loop of the system were being manifest in the second loop

via some sort of helpful loop interaction. Additional evidence for this was

provided by the observation of a tradeoff between the magnitudes of the two

peaks in a[S]. Increasing the ratio IL21 1/1L 1I by a constant caused the

angle 0 to become larger, the second peak to increase in magnitude, and the

first peak to decrease. Decreasing this ratio produced the opposite effect.

The measure of interaction t became smaller, the phase e2 became more negative,

and the second peak decreased at the expense of an increase in the first peak.

This example illustrates phenomena such as helpful loop interactions

which have no analogue in SISO systems. Moreover, these interactions appear

to yield additional tradeoffs among feedback properties in different

frequency ranges. An extended analysis of this example will be performed in

a later chapter, after the development of MIMO generalizations of the Bode "f

gain-phase relations.
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8.5. A Practical Example

The purpose of this section is to analyze an example of a practical

- feedback system using the results of Sections 8.2 and 8.3. One reason for

doing so is to verify that the approximations of these sections are valid for

systems of physical (as opposed to academic) interest. Another reason is to

illustrate how the approximations might be used in design.

The example considered is described in [46]. It consists of a

laser beam whose direction is controlled by two mirrors. Since the transfer

functions given in [46] did not yield the plots contained therein, the

Satransfer functions were modified so that plots similar to the ones given were

* obtained.

The open loop transfer function for this system is

L(s) (20)(~2 F 1 F 1(8.44a)2II
(1 s + 10 2.52 0  

Gy]

.G~s (172.8) (s + 1068.7 s + 188"5 (8.44b)
lot s + 7480.7 ~ s

G = (1.782) (s + 16.2 s + 62.8 (8.44c)y s + 1163.7 )  s

Bode plots of the elements of L(s) are found in Figures 8.8-8.10.

Note the differences in the bandwidth of the two loops. Gain crossover for

L is 2300 rad/sec, gain crossover for L 410 rad/sec, and gain

crossover for L is 4000 rad/sec. These plots show the existence of a

21'
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Figure 8.8.a. Gain of L(1,1).
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frequency range over which the gain in the first loop of the system is large

while that in the second loop has been rolled off. Moreover, the large L21

e-lement implies the two loops are rather strongly coupled over this frequency

range. The singular-values of L(s) are plotted in Figure 8.11. Note that the

difference in bandwidth between the two loops of the system corresponds to a

difference in the bandwidth of the singular values. Thus it should be possible

to apply the approximations of Section 8.3 to estimate feedback properties.

First, note that the angle 0 between singular subspaces is large

(Figure 8.12) and is related to the coupling between loops introduced by the

S21 element. To see this, observe that the right singular subspaces are

aligned with the standard basis directions. This follows from the small value

of b (from the parameterization 7.26) in Figure 8.13. Since inputs to theu

individual loops of the system are thus aligned closely with inputs in the

right singular subspaces, it follows that the left singular vectors may be

approximated from

Il v 1 u1

FL L 1 coso
11 12 u

L L2 2 j sinO ejIPu 
(8.45)

11 1L . =" 1 "(8.46)
L c°S + L sinu ei~ u

21 u 22 u L(.6
Since cosu o 1 and 1L221« 1L211, it follows that

-1..2 !<<:.:j.
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Figure 8.11. Open loop singular values and eigenvalue magnitudes.

ps



182

11

80

60

cos= u (degrees)

40-

20--:

cos 9 (decibels) ""---_

-20 1 1
1 10 102 103  1o4

Frequency (rad/sec)

Figure 8.12. Angle between singular subspaces.

::-:,,.. ,• - . - .. -. ..... . . .... :: . - : -:.. . ... .,. - . . . , . ..---, .- :



wI-

183

50

CP

- -50-
(n
CU

-100

-150-

-200
110 102 10 3

Frequency (rdd/sec)

Figure 8.13. Right singular subspaces.
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*01 1L1 1 12 + 1L2112  • (8.47)

Thus~~~ILl -.

cosov  IVlI (8.48)

i LII(2 + IL2112

and

v 4L L 2 1 - L 1 (8.49) :x

This may be verified from Figures 8.8, 8.9 and 8.14.

Comparing the relative magnitudes of LII and L21 (Figures 8.8 and

8.9) it can be seen that v is at least 450. (Note that a similar procedure

cannot easily be applied to estimate cosov using the smaller singular value.

This is because the approximation analogous to (8.46) - (8.47) must deal _

with products of large and small numbers. Such products cannot easily be esti-

mated.) Next, since cosO = Iui vi - l H , it follows that of Ov" Thus the

identification of the right singular subspaces with the physical loops of

the system implies that the coupling between these loops produces coupling

between the high gain and low gain subsystems defined in (8.1). Since

Corollary (8.6) shows that C[S] t follows that the large level of
cos

coupling between loops will cause poor sensitivity properties in the

appropriate frequency range. (This approximation may be verified from

Figures 8.12 and 8.15.) In fact, there exists a tradeoff between coupling

and poor sensitivity. This was pointed out in [46); however, the analysis

was made entirely a posteriori by direct evaluation of the singular value

decomposition of the sensitivity matrix. Note the SVD of the sensitivity

matrix is available from (8.17):

- . . .. "
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S Sapp  u2 (v2 Hu2) -v 2  (8.50)

Since the right singular subspaces approximate the standard basis directions,

it follows that the measures of phase difference 8 and 8 (defined in

i

(7.15) and (7.25)) are approximately equal. This may be verified by

comparing Figures 8.16 and 8.17. Thus (8.50) is in turn approximated by

S S[s e-) . (8.51)app L v cosO

Thus, in the frequency range where 3[S] it follows that the rank one
cos o

destabilizing perturbation of smallest norm [46], is given by

4e 0 -ioeij~pV
° E (cos4 ej 2 ) - ve (8.52)

0 cos v

"
The above discussion shows that much valuable information about

feedback properties may be obtained from analysis of the open loop transfer

function in the frequency range over which the gain in the first loop is

large and that in the second has been rolled off. In Section 8.3 approxima-

tions to feedback properties were presented for the frequency ranges in which

the two open loop singular values were being rolled off. The approximations

to 3[S] given by (8.37) and (8.43) are plotted in Figure 8.18. (Actually the

inverses of these are plotted to be consistent with (46].) The approximations

are valid to within a few dB; certainly they are much closer than those

obtained from using single-loop analysis (Figure 8.19). Note that since L

is triangular, the same results are obtained using the eigenvalues of L to

*v . ° .. °- . - .* -., ° . . . . . . . ° - ° - - . . . , ° o . . , - . . . . , - • . . -
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estimate feedback properties. The gains of the eigenvalues are plotted in

Figure8.11 while the phases are indistinguishable from the parameters i

plotted in Figure 8.16. Incidentally, this correspondence together with the

fact that the open loop singular values roll off at approximately the

same rate as the eigenvalues (Figure8.11),shows that the Bode gain phase

relations are approximately satisfied by the functions ai ejei. As

demonstrated by the example in Section 8.4, there is no a priori reason why

this should be true, especially since there is a significant amount of

* coupling present in the system.

The preceding discussion has shown that much valuable information

-' about feedback properties may be obtained from analysis of the open loop

* transfer function. This fact has several advantages. First, these feedback

properties may be determined a priori before a design is completed, rather

than a posteriori as in [46]. This could reduce the number of iterations

* needed to achieve a satisfactory design. Second, the existence of a tradeoff

between the level of coupling and good feedback properties can be seen and

- quantified. These two facts together serve to point out the usefulness of

this method of analysis, since the tradeoff between desirable system properties

may be made in part at an early stage in the design process. Thus the results .

. of Sections 8.2 and 8.3 yield rules of thumb concerning the effect of coupling

high and low gain subsystems. These rules may be used to gain a feel for the

set of possible designs which is more efficient than resorting to trial and

* error. This characteristic is very much in the spirit of classical methods.

• 0-,

"4 . ** * . - .i 
4

N * j



193

p Finally, as discussed in [46], the reason that coupling was introduced into

this design was to improve some open loop system properties (reducing torque

requirements). The results of this chapter show how such open loop phenomena

may be celated to feedback properties.

,°.

8.6. Systems with Three Inputs and Three Outputs

The purpose of this section is to present some results for relating

open to closed loop properties of systems with three inputs and three outputs.

It will be seen that there exist both similarities to and differences from the

two input two output cases.

Consider a system with three inputs and three outputs and suppose

the open loop transfer function has much larger gain in one direction than in

others. Then, as in (8.1), L(s) may be written

L uV UH + (8.53)

Since the subspaces UI and Vi are one-dimensional, the matrices in (8.53) may

be written U1 = uI , V I = V, Z1  1i U2 ' [u2 1 u3], V2 = [v2  v3] and

E g2  diag[a 2,C3]. Suppose that the singular values are numbered so that

a >> a> 03 Then, assuming the conditions in Theorem 8.3 are satisfied,

it follows that the sensitivity function may be approximated by

S~S g~(HU -1 HS S app 2 2 + V2  (8.54)

# .... - -. . . -
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As in (7.15), let

u V i-l,...,3 (8.55)
i i

and define

Note the vectors u 1 and v 1 satisfy the relation

V.Lu1 =a eie (8.57)

Finally, define the matrices

9 [Eli q2  diag[61,82,ea (8.58)

and

V [V1  v]-V ej

(8.59)

1' 2 3

In terms of (8.59) the approximation (8.54) becomes

S TJ AHjE 2 -1- Hap U(VHu2 + r2 e ~V2 (8.60) -

Now from (8.60) it follows that

1[S] -aSap =C[0 u 2 + z 2 eJ6 )-

(8.61)

= H ~ j92)]
[ 2 ~2 +
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In general it may be difficult to obtain simpler expressions for

a[S app. Note, however, that lower bounds on a[S app may be obtained from

-1upper bounds on a[Sa p . If any such lower bound is large, then the systemapp

has poor feedback properties. Thus,write

VU+aeJ e2 3u2

e22 2
".iS -  . (8.62)

app

- a 2 u3  v3 Hu3 + a 3  e j( 
.

From (8.62) it follows that an upper bound on a[S ap] is given by the norm

-1of each row and of each column of S - . Define" app

coso i = u (8.63)

* Then (8.61) and (8.62) imply

1/jcoso2 + C2 eje2 1
2 + Hu12

/ COsO 2 + a2 ej e22 + 1u212

"[S app]> max (8.64)app l/.coso3 + a3 eJe3!2 + Hu 1 2

3 332 31-

r- 1/4 coso 3 + 3 e 0312 + I u 2

It is also possible to obtain upper and lower bounds on G[Sapp ]

using the relation

Pappl_ < a[Sapp ] < is appil (8.65) .
12 F F

L.t,
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"- 4.

where = oi  is the Frobenius norm of M. From

ie H

coso3 + 03 e 3 3 u 2

S = sej (8.66)
app L - H O~+

.4'

(cos 3 + 03 ej3)(cos 2 
+ Cy eje2) H u)(v Hu )

S33223

it follows that

i ps 2 [Icos¢ 3  +a 3  e33 2  + Icos4 2  + 2 eie2I 2  + 1Iv3H 2 + 2u31 2]
FI F(coso 3 + 03 eJ83)(cosq2 + 02 e j e2) H ( u )(vu3) 12

(8.67)

The bounds (8.64)-(8.67) may be used to relate feedback properties

to those of the open loop system, although the results are not as conclusive

as those for two-input two-output systems in Section 8.3. Nonetheless, one

can point out some differences between systems with two inputs and outputs

and those with three inputs and outputs. For example, the quantities

Icosoi + a. ejil can be small without necessarily causing poor feedback

properties to appear. Suppose ncoso 3 + 03 eJ
6 31 0. From (8.64) and

(8.67) it follows that a[S ] will be large unless both Iv3"u 2I and

V 2 Hu3 1 are bounded sufficiently away from zero. Note this implies two

conditions. First, in order that IHI and I . I be as large as possible,

outputs of L(s) due to inputs in the subspace U2  f {column space of U2 =

[u2  u3]} should lie primarily in U., as well. Second, there must exist

coupling within the low gain subsystem; i.e., part of the output of L(s) due

to an input in the direction spanned by u2 (respectively, u3) must be fed
2..3

back into the direction spanned by u3 (respectively, u2).
..
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Note also that if Icos 3 + a3 eJ
831 f 0 and if a2 >> 1 then it

follows from (8.65) and (8.67) that [Sapp ] >> 1 independently of the

magnitudes of vu Ij and u This makes sense because in this case

H
outputs from the low gain subsystem represented by a 3v3u3  can only be fed

H
into a subsystem a2v2u2  with much higher levels of gain.

Suppose that there exists a range of frequencies over which

ai>>a2>>a3 . The MIMO generalizations of crossover frequency discussed in

Section 8.2 may be applied to a1 and a 3  Does there exist an analogue of

crossover frequency for a2 ? To study this, note that the conditions a1>>a >>a

and a 3 u 3 1 imply

v u -v uv3 u3  - 3 u2

HHu1
2  3  2  2  

2

,;2S (8.68)'-
,.. app ''

appH3 2 e2 :!3Hu2) ( 2Hu3) (8.68)

32u 3 2 2ap 2"-2 2

If a2  u then o[S as shown in Theorem 8.1. To obtain

a generalization of MIMO crossover for a2 , note that the denominator in

(8.68) must be bounded away from zero. This motivates definition of cross-

over for a2 as being that frequency for which

-H u H uH u H
426- (v2 u2) (3 u3) - (v3 u2) (2 u3(' 2  =H l (8.69)

v u
3 3

Note that the numerator in (8.69) is equal to Ider[fVRU 2 ]. Recall the

singular values of V2HU are equal to the cosines of the canonical angles
2.2

r.?...-...;i.,i.< , .., ..'.. ,. .,' , ." " .-'.-,..:.':... .., -'. .i. i....i i..! ., 9 ' ..i. . ..' ,. ". .".. . . .,,. . ...'- -.. , , " ""
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between the subspaces U2 and 132. Denote these angles by a and a. Then -'

(8.69) becomes

cosa • cosa
a2  COO (8.70)

Note that cosa < < €3 < cosc. Thus (8.70) gives a more accurate indication

of crossover for a2 than the conditions cosa < a2 < cosa imposed in Section

8.2. Also note that, although the value of 82 is important when (8.70) holds,

e 2 should not necessarily be bounded away from ±7. This follows since the

quantity [-(v (u)v u )] can achieve complex values.

The results of this section have shown that it is possible to

obtain approximations to feedback properties for higher dimensional systems.

The results are not as conclusive, however, and this area definitely needs

further research. -

8.7. Summary

The purpose of this chapter has been to generalize one of the

important aspects of classical feedback theory to MIMO systems. This aspect

was the ability to approximate feedback properties in terms of the open

loop transfer function. As described in Section 8.5, the results of this

chapter may be used to obtain rules of thumb useful in design.

The results may also be used to gain information about various

design procedures. For example, linear quadratic-state feedback designs

are guaranteed, under certain conditions (e.g., [4, p. 13]), to possess

K. "' -:' .., , , 5.: ""\:' -_, , ' , ,' ""' ",' " "':'? t " ," , . , ',' ,;:"," , --".
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the property that a[S(jw)] < 1, VW. Some implications of this fact are

pointed out in Section 7.3. The results of Section 8.2 show that it is

not possible to use this design procedure to obtain a design with strongly

coupled high and low gain subsystems.

Finally, note that the results of this chapter are based upon

algebraic system properties; i.e., properties which are related at a given

frequency by an algebraic equation. Based upon these results, it might be

conjectured that a rule of thumb for good design is that coupling between

subsystems with different levels of gain is always to be avoided. Certainly r

this would be true if system properties at different frequencies could be

manipulated independently.

The various Bode integral and gain-phase relations show that system

properties at different frequencies are not independent even for SISO systems.

-. Thus the existence of coupling between high and low gain subsystems might be

" used to affect the value of some system parameter which might not appear,

a priori, to depend upon coupling. This is best demonstrated by the example

in Section 8.4. This example exhibited feedback properties which appeared to

violate intuition based upon SISO Bode gain-phase relations. In order to

achieve this, however, it was necessary to-introduce coupling into the

system. Thus the rule of thumb conjectured above fails when feedback prop-

erties constrained by the analyticity of transfer functions are considered.

Describing such constraints is the subject of the remainder of this thesis.
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CHAPTER 9

DIFFERENTIAL EQUATIONS FOR SINGULAR VALUES AND VECTORS

9.1. Introduction and Motivation

In Chapter 2, several Bode integral relations were introduced and

their implications for design were discussed. In Chapter 3, one Bode

relation was generalized and new integral relations were presented. Recall

that these relations show not all design specifications are achievable and,

therefore, tradeoffs among desirable system properties in different frequency

ranges must be performed.

Although the Bode integrals are precise quantitative statements,

their greatest value may lie in the qualitative insight they afford into

system properties. This insight allowed the development of various rules

of thumb useful in feedback design. As an example, consider the Bode gain-

phase relation (Theorem 2.2). This relation shows that the open loop gain

cannot be rolled off much faster than 20 db/decade near crossover frequency.

The weighting function (2.25), however, shows that the value of phase near

crossover is relatively independent of the gain behavior at frequencies much

more than a decade or so away. (However, see [47] for discussion of a case

where this rule of thumb fails to hold.) In any event, the integral

relations and interpretations developed by Bode provide the theoretical

foundation upon which the practice of feedback design is based.

The problem of deciding whether a given design specification is

achievable can be restated as: Under what conditions is a given function

of the complex frequency variable realizable as the transfer function of a

.-.
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linear time invariant system? From well-known properties of the Laplace

transform,it follows that one such condition is that the function must be

locally analytic in the frequency variable. This fact is significant in

p. that the mathematical tools used to derive the Bode integral relations are

found in analytic function theory. It is apparent that the same tools must

play a role in any attempt to extend these integral relations to M4IMO

systems.

First, note one way of viewing the Bode gain-phase relations

(Theorem 2.2) is that they show how partial knowledge or partial specification

of a transfer function can suffice to completely determine the function.

. Thus, although two real parameters or coordinates are necessary to describe

a transfer function (e.g., gain and phase), there is in essence only one

degree of freedom available for design.

Arguments based upon degrees of freedom can be made for MIMO

systems as well. Consider a matrix transfer function written in standard

coordinates; each element of this matrix is a scalar transfer function.

*i Hence, the Bode gain-phase relations can be applied to each of these scalar

functions to show that, of the 2n2 real coordinates needed to describe a

~nxn tee2transfer function matrix in C , there exist only n degrees of freedom.

The difficulty with this observation is that the gain and phase of these

elements do not generally yield useful information about feedback properties.

It was argued in Chapters 6-8 of this thesis that certain

parameterizations of the singular value decomposition of the open loop

transfer function matrix are useful in assessing feedback properties.

L
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These parameters include the singular values, parameters describing the

directions of system inputs and outputs, and various measures of phase

difference. In Section 7.4, two parameterizations of transfer

function matrices in C2x2 were presented. Each of these parameterizations

involved eight real coordinates; the above argument using standard

coordinates and scalar gain-phase relations shows that these eight new

*coordinates must also only represent four degrees of freedom. An example

* giving some indication of the relation among these parameters was presented

in Chapter 8, Section 8.4. The fact that these parameters do appear to

be related to feedback properties motivates study of how the property of

local analyticity is preserved under coordinate transformations.

The most useful statement of the dependence among system parameters

is given by the gain-phase relations. There are other equations which must

be satisfied by analytic functions which are more simple to treat mathemat-

ically than are the gain-phase relations. These include the Cauchy-Riemann

equations, Laplace's equation, and Cauchy's integral formula. The manner in

- 'which these equations are preserved after coordinate transformations will

thus be investigated first.

The remainder of this chapter is organized as follows. In Section

9.2 some elementary properties of analytic functions are reviewed and the

question of whether singular values possess any of these properties is

addressed. In Section 9.3, formulas for the derivatives of singular vectors

are presented. It is shown that singular values and singular vectors are

not independent quzitities. Knowledge of singular values indeed determines

some properties of the singular vectors. This relationship will be inves-

tigated in detail in later chapters of this thesis.

-*- * .* .. . *.-. *. < * ** -*--- '
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9.2. Analytic Function Theory and Singular Values

The mathematical tool used by Bode in deriving the integral

relations discussed in the previous section was complex variable theory.

This theory was applicable since transfer functions are locally analytic

in the complex frequency variable. It is not apparent, however, that the

same tools may be applied to study singular values of matrix transfer

functions. Since singular values are real they cannot, by definition, be even

,. locally analytic functions of s.

Recall that one interpretation of the scalar gain-pha~e relations
emphasized that, along the jw-axis, knowledge of the gain of a transfer

function suffices to determine the phase as well. This follows since gain

and phase are not independent quantities under the conditions of Theorem 2.2.

The last observation motivates the question: Does knowledge of a singular

-- value of a transfer function matrix suffice to determine any other properties

of the matrix?

U The Bode gain-phase relations express the interdependence of

scalar gain and phase in the form which is most useful in applications to

feedback theory. It is mathematically more tractable, however, first to

study this interdependence as expressed by the Cauchy-Riemann equations and

properties of harmonic functions. To do this requires some results from

*complex variable theory. Background information is found in [261 and [48].

Definition 9.1. [48, P. 34]: Let D be an open subset of C, the complex

plane. Then, a function f D -* C is analytic if f is continuously

differentiable in D; i.e., if the derivative of f with respect to s

. ..exists and is continuous at all points of D. *1
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Definition 9.2. [48, p. 401: A region is an open connected subset of the

complex plane.

Theorem 9.3. [48, p. 421: Let g and h be real-valued functions defined on

a region D of the complex s-plane, s- x+jy. Suppose that g and h have

continuous first partial derivatives. Then, the function f : D -* C, defined

* . by f(s) - g(s) + jh(s), is analytic if and only if g and h satisfy the

Cauchy-Riemann equations:

%D h

ax ayJ

,y ax j

*Equivalently,

af 1 af
ax j ay .1

If f(s) is analytic and nonzero on some region D then,

log f = loglfI + j f (9.2)1

is also analytic on D. Moreover, the log magnitude and phase of f satisfy

the Cauchy-Riemann equations:

alogifl _aZ-
'< ';(9.3)

alogIfi .-a4 f
ay ax

. .
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S Equations (9.3) can be used to show that knowledge of the gain of

a transfer function f(s) in a simply connected region D where f(s) is analytic

and nonzero suffices to determine the phase of f(s) up to an arbitrary

constant. Given the value of 4 f at some point s CGD, the value at any

other point sGD can be computed by a line integral. Let y: [0,1]-D be a

piecewise smooth path with y(0) - so and y(1) 
= s. Then, f(s) can be found

by integrating the differential form
az-f

d4 f - dx+ -fax ay
(9.4)

- logIfl alogifI
y dx + ax dy'Z ay ax ,

along y. Thus,

4 f(s) f zf(so) + f d4 f

- (9.5)

4f(so ) + Fa -f dt
0 0 

., x a ay at]

Using the Cauchy-Riemann equations shows that the integral in (9.5) is

" determined by Ifl:

:4 .f(s) = 4af(s o ) + fl !x + a!olfl1 dt (9.6)

(s ~~ 0 ) ay at ax at] d

The fact that 4 f(s) is well-defined in a simply connected regioa

follows from the fact that the line integral in (9.5) is independent of the

path y. Path independence in a simply connected region is guaranteed, provided

that the differential form (9.4) satisfies* the condition

The elementary properties of differential forms used in this chapter can
be found in [49].

•~ * ~* 4 4 .-. -4* . *- . .
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d 2 4If0, or

d a2f a2yfJ dxAdy (9.7)
ii  2 " yax axay,

- 0

Note that (9.7) is equivalent to the familiar condition that mixed second .

partial derivatives are equal.

From the Cauchy-Riemann equations it follows that (9.7) is also

equivalent to the requirement that logJfj satisfy Laplace's equation:

2 2
a 21glfl + a2°glfl= 0 (9.8)2 2ax2  ay ,4

Definition 9.4. [48, p. 41]: A function with continuous second partial

derivatives satisfying Laplace's equation is said to be harmonic. U

If D is a simply connected region and g: D- -R is harmonic on D, then it

can be shown [48, p. 43] that there exists another harmonic function

h D I R such that the functio., f : D- C defined by f = g + jh is analytic

on D. Such a function is termed a harmonic conjugate of g. It is a fact

that the real part of any function analytic on some region D is harmonic on

D and the imaginary part of the analytic function is a harmonic conjugate.

In particular, on simply connected regions over which the logarithm of a

transfer function, log f(s), is analytic, it follows that the phase, 4 f(s),

is a harmonic conjugate of the log magnitude, log[f(s)[.

Since singular values are a generalization of gain to MIMO systems,

one might conjecture that each singular value is the magnitude of some

locally analytic function (as is the gain of a scalar transfer function).

-/ ..='."-. f , -;- '.".- -".-'.".-"..-...-< ' % ",. : ..'- - ,. -. . -'-' . " '.'' -
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W From the preceding discussion this conjecture would be true, provided that

log o i is locally a harmonic function. The following example shows the

conjecture is false, however.

Example 9.5: (Due to Doug Looze.)

Let

M ( s ) 0
2 s]

The singular values of M(s) are given by

a+ - + s +j l

02 = -1 + ,/js{ +7l>

from which it may be verified that

2 21a logo2  a logo ____

2 2
ax ay

Proof: See Appendix F. .

The fact that log ai is not, in general, harmonic shows that

a cannot, in general, be the magnitude of some analytic function. In

particular, knowledge of o in a simply connected region does not suffice

,S - .i --- " " . -'-- -. ...-. ". -. -. i .. - ",. . .,-- . -- . ..--. .-- ,v ,--.. -- -.-- . -.-
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to determine the value of a harmonic conjugate in the same way that the log -

magnitude of a scalar transfer function determined the phase of the function.

Nonetheless, it can be shown that knowledge of a singular value of a matrix

transfer function does determine other properties of the matrix. This will

be seen from expressions for the derivative of a singular value.

Since singular values are not analytic in the complex frequency

variable s= x+ jyit follows by definition that the derivative of a

singular value with respect to s does not exist. Partial derivatives with

respect to x and y do exist, however, although some care must be taken for

V the case of multiple singular values. A thorough discussion of the existence

of partial derivatives of singular values and vectors is contained in

Appendix G. To illustrate the discussion of this section and Section 9.3,

it is sufficient to consider only distinct singular values. Proof of the

existence of derivatives is deferred to Appendix G. The following formula

*" for the derivative of a singular vector was originally derived in [10] but

is given here for the sake of completeness.

Recall (Appendix B) that the square of each singular value is an

eigenvalue of the matrix [M(s)]HM(s) with eigenspace given by the right

singular subspace:

[M(s)]R(s) s) a 2u (s) (9.9)

From (9.9) it follows that (suppressing dependence on s):

, ~~~~~~~........ ......... ....... .............. . . .:. --
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H a&H 2
u -u - = 0Ii ax i i

F uH 
a

2 Hu + U H aMHM -2a 1 ± (-0Cri Lax u i. axj ax -i ax

Since u~ is, by definition, a unit vector:

H

ii

ax (9.11)

Re [iH ui] 1 'iH + H 'ui]

=0

Substituting (9.11) into (9.10) yields:

*ac± Hi H H
i ax LL~axj u

Re H 3M I
Kax Le vi ax Ui1 (9.12)

Similarly,

3Hc3M
T Re Lvi ~Ui (9.13)

The fact that M(s) is locally analytic implies that each element

of M(s) must satisfy the Gauchy-Riemann equations. This in turn yields:

Lemma 9.6: Let u and v be vectors in In Then if each element of

M(s) is analytic at s= x+ jyE i, it follows that
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ReFH 'M 1] I [vH 'M 1]7 X- TY

and (9.14)
Re [v u Im v -u ' u

L y ~ax]

Proof: The Cauchy-Riemann Equations (9.1) yield:

a} laM

am'X 1 am

x j ay

(9.15)
.. H DM 1 H am
,' . "v TU u= v Ty u

Taking real and imaginary parts of (9.15) yields the result. U

Note the similarity of Equations (9.14) to the Cauchy-Riemann

Equations (9.1). Together with Equations (9.12)-(9.13), Lemma 9.6 shows

that each singular value of a matrix locally analytic in s determines

a differential form defined by (dropping the subscript "i" for convenienc<: ,

A Im vH !u dx+!Im v u dy

-RevH 2M u  Hi 3M 3
.... u dx + - Re v ud

Reu d (9.16)a ~ay a~ x d

A = loga dx + al dy . .ay ax

Recall that a differential form (9.4), similar to (9.16), was

Wfound to relate the gain and phase of a scalar transfer function. Again,

one might conjecture there exists some function e such that A = d. By the

Poincar4 Lemma [49, p. 94], such a function e exists if and only if

dA-0. But, as Example 9.5 has shown, this is generally impossible; the

o - ° O
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m condition dA= 0 is equivalent to the Laplacian of log a being equal to zero

and this is not generally true.

The preceding discussion shows that the differential form (9.16) does

Snot arise from the differential of any function (in geometric language, [49],

the form is not exact). In particular, there exists no function 6 for which

logo + j8 is locally analytic. Hence a cannot, in general, be the magnitude

of a locally analytic function. Nonetheless, knowledge of a singular value

does determine other properties of the matrix M. Thus one may now pose

the question: What is the significance of the differential form A in (9.16)

which is determined by o(x,y)? To answer this question requires a discussion

of the derivatives of the singular vectors.

9.3. Derivatives of Singular Vectors

In this section, formulas for the partial derivatives of singular

vectors are presented. As in Section 9.2, questions of existence are

relegated to Appendix G; similarly, the discussion in this section is

restricted to singular values of multiplicity one.

First, recall the one degree of freedom which exists in choosing

each pair of left and right singular vectors. This degree of freedom is

- discussed in detail in Appendix B but is reviewed here for convenience.

Corresponding to each singular value a of multiplicity one

there exist uniquely defined one-dimensional right and left singular

L subspaces denoted U and Vi, respectively. These subspaces are determined

i "[-.i

N, . -

.i- i ii - "--" .- .- -"". . ('J< . P< . ... -';- -- • . " ." -- . '
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by a min-max principle inherited from properties of Hermitian matrices.

One can choose the right singular vector as an arbitrary unit vector

u 6U If ai 0 0, then the left singular vector is uniquely determined
i i* i

by the conditions that vi Vi and that a, = vi HMu is a positive real

number. To illustrate the degree of freedom available, let u i be one choice

of right singular vector and let vi be the corresponding left singular

vector. Then, choosing a different right singular vector ui = e u. yields

a different left singular vector vi =e v

Now, consider the singular vectors along a curve in the complex

plane: y(t) - x(t) + jy(t). Since it was assumed that the singular values are "

distinct along y(t), it follows by continuity that this property holds in a

neighborhood of each point in the image of y. The results of Appendix G can

then be applied to show that the singular vectors may be chosen to be differen-

tiable in (x,y) in some neighborhood of each point in the image of y. One can

think of the motion of a singular vector along y(t) as being decomposed into two

components. One component measures how the appropriate singular subspace is

changing along y and is well determined by the min-max characterization of

singular values and vectors. The other component is a function of which unit

vector in the subspace is being "chosen" as the singular vector. Note that

this component would be arbitrary (subject to smoothness) if the convention

that a, = viHMui be positive real were not imposed; obviously, a. = IviHMu"

for any unit vectors in the appropriate subspaces. A helpful picture to keep

in mind is that of a vector which moves along a path in space (motion of the

singular subspace) as well as "spins" as it moves (motion within the singular

subspace). This analogy will be made precise in Chapter 10. First, formulas

for partial derivatives of singular vectors will be discussed.

|.4 "-..,' ; -.. 2 '.-. '. '' - . '' . '' " '' -. - " " ' ''.. ' ' " . - '" ' - - ' " - ' '' " ''
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Let u~ and v~ be right and left singular vectors corresponding

to a singular value aof multiplicity one. Write the derivatives of

ui and v~ with respect to x as (a similar formula holds for the derivatives

with respect to y)

au n / ai
ax Ex) (9.17)

kul

av~ n (Hav~
vlvk (9.18)

ax 1 k- k ax

Using various properties of the singular values and vectors yields, for

i k

MHM 2Ui ui i

au a~ 2 au
u I 2 -u +0 a

ax ui ax i ax i i ax

H a MM 2Hau 1 -

Uk -T-uj +2 'kuk -O+0 uk ax~

i ( 0) uk Mu. + UkM Uj

au U

ax ~.(l 2 ~ i k ax vi + akvk TX . 9.9

Similarly,

Hk Hv(1~ Ha MH i+a H 9 M
k ku"I'k ax v+ vk ax ~(.0
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From (9.11) it follows that
Dui

and (9.21)

Re v Ha v i  0 R

Li~ ai H i

It remains to calculate IM u and Im v j From the identity
- -. uiirLvi1i i

S+ +VH ui i

Hvi M H a Da i

"" i v + +Re L ui i axui ax

F.a v i v i + u i 1 + Re im + H

Lvi i x L i (9.22)

Note that the right hand side of (9.22) shows that the left hand side is

independent of the choice of singular vectors.

The degree of freedom available in the choice of singular vectors

manifests itself in the differential equations governing their behavior. To

see this, consider a path y - x+jy [0,I]-C. In Appendix G it is shown,

using results of Kato [321, that there exists a unit vector ui(t) defined

along Y(t) with the properties that ui(t) is analytic in t and that ui(t)E

U .(t), the ith right singular subspace. Thus ui(t) is one possible choice

of the ith right singular vector. Let 0(t) be an arbitrary real valued

K. function analytic in t. It follows that another choice of ith right singular

vector, also analytic in t, is given by

(t ) ej(t) u (t ) .
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Note that

dii du d %
dt dt e 1 dt Ui  .7

dui
e j a du I + 4 l j do.

dt "i dt

Thus

H dui iH e1J dui dku--U -- +
ui dt- i, dt + dt

U H dui da
i d-t-+ j

SHdui Hdu i-
Since ui and ui are unit vectors, u - - and u, -T- must be purely imaginary.

Hence the lack of uniqueness in choosing the right singular vector indeed

manifests itself in the differential equation governing the vector. The

right singular vector may be chosen so that the component of its derivativegive byuiH dui "

given by u is any arbitrary function of t, subject only to differen-
dti

tiability requirements.

It remains to verify that this is indeed the only degree of freedom

available in choosing the differential equations governing the singular vector
H du

' pair. To see this, first note that once the component u. is specified
dv

-H iit follows that vi ,-- is completely determined from the equation

v iH dv H -~As~Im(v H dM
dt i dt a i dt u]

idu i  dv, -
Second, note that -- and - are not functions of the choices of

dt dt

right and left singular vectors uk and vk, k#i. This follows since the

H Hprojection operators ukuk and vkVk in (9.17) and (9.18) are functions onlv

of the singular subspaces and k -

Ilk... . ....
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To summarize, one can construct a pair of left and right singular

vectors along any path y(t) (over which the corresponding singular value is

distinct) by integrating the differential equations

dut  n H dui

dvi n dvi" (v H ""
dt Z vk(vk-*

H dui H dvi
In these equations the terms Uk(Uk -- ) and V(v -) for ki are completely

determined from (9.19) and (9.20) and similar equations in y. The termsHdui dvl

ui(ui -- ) and vi(v H -di) possess one degree of freedom. Once this degree
Sd t Hdu dv

H i H iof freedom is utilized in choosing the component ui i  o d-o rr""-dtqov -j- (or some

combination thereof), the remaining component is completely determined from

(9.22) and a similar equation in y.

Given an initial condition ui(0) let u (t) denote the right sin-
du

gular vector obtained by setting ui 0 and integrating the resulting

differential equation along y(t). Note that, of all possible choices of u (t)

Idui i
along y, the choice ui(t) yields the minimum possible magnitude of i 2 Thisi udt] 2

-' du*

follows since u dt - 0 by construction and the other components can change I

only by a multiple of ei (t) for some real valued 6(t). Thus, ui(t) changes

along y only enough to remain in the correct singular subspace and no more.

*i With this choice of right singular vector the left singular vector

is completely determined; from (9.22)

H dv
V j dt Im vi ui] (9.23)

7. .
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_---1 m v H dM
The magnitude of Im[v u] indicates how much the left singular vector

chosen as described deviates from the "minimum energy" left singular vector

obtained by setting v i d y th m

Of all possible choices of singular vectors, the choice such that

dvi du"'ithe vi - 0 or ui - 0 yields the minimum possible value of

diu dvSi(9.22). This fact should have significance since

1 H
1 Im[viH 3 u ]a im v dx 1 vH M

ia m iH ax uil a °i y uildt

aloga aloga 9.4i dx i dy

ay dt ax dt

*i d

where the last equality follows by evaluating the differential form (9.16)

on the tangent vector to the curve y.
1 mvH dM -

Thus the quantity -Imv H- u , which measures the deviation of

the singular vector pair from the pair which moves just enough to remain in

the proper singular subspaces, is determined by the singular value a.

In answer to the question posed at the end of Section 9.2 it can be

said that the singular value determines some property of the singular

vector pair.

!: Now, recall the two components of singular vector motion discussed

above. An analogy was made between these two components and vectors in J 3

which move in space as well as "spin" as they move. If the spin component
du
H ican be identified with uiH - then setting this component equal to zero

Sdt'

implies the vector is not spinning as it moves. The following discussion

will hopefully clarify this.

IF. .
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w4
One can consider spinning as a generalization of the following

situation. Suppose that along y(t) the right singular subspace Ui is
H dui

Constant (u~ -H - n 0, 10J). Then, ui(t) - eje (t) ui, where ui is constant,
H dui dO

and ui - L ~ . The change in 6 along y can be thought of as spinning

or twisting of the singular vector. (Think of a pencil being held in a

fixed direction, but being twisted about its lengthwise axis.) Now it is

clear that for the case of a constant singular subspace, ui
H du Oi-O-ui(t)=

" - constant. Now, intuition suggests that a motion analogous to spinning takes

place even if the singular subspace is not constant. In particular,

idu H du iui dt should be a measure of the spinning and ui -. 0 should mean thati ti dt

ui(t) is not spinning. Consider a thought experiment: Suppose y(t) is ai l

closed curve; i.e., y : [0,1] C C, y(0) - y(l). If the singular vector

does not spin then will ui(l) - ui(0) when (9.17) is integrated with

H dH di 0? Clearly, this will be the case if the singular subspace is

constant; thus, if ui(l) 0 ui(O) it must be due to the motion of the

singular subspace along y. These questions will be pursued shortly.

' "In earlier chapters it was argued that certain measures of phase

difference between singular vectors have interpretations in terms of

* feedback system properties. The fact that each singular value, via (9.24),

constrains a quantity which determines the difference in components' ui dui v dvi
H i -dt and d---H suggests that this measure of phase difference might be

related to these components. Thus in the attempt to generalize Bode

gain-phase relations to MIMO systems it would appear that understanding the

property of singular vector pairs governed by 1 Im[v H ui may be of
sg 1niiane

"" significance.
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9.4. Summary

The purpose of the preceding discussion has been to motivate

further investigations of the property of each singular vector pair

determined by the singular value. To summarize, in SISO systems, once

gain is specified then phase is determined and this has important design

implications. In MIMO systems gain and gain directions, as quantified by

singular values and subspaces, as well as certain measures of phase difference

between singular vectors have design implications. Now, each singular

value determines some property of the associated singular vector pair;

intuitively this should have something to do with the measure of phase

difference between the pair of singular vectors. In order to pursue

this question, it is convenient to assign coordinates to the singular

vectors and to use these coordinates to study the solutions to the

differential equations governing these vectors. This is pursued in the

* next chapter.

Finally, a formula for the Laplacian of the logarithm of a

singular value will be presented. For simplicity it will be assumed that

the singular values are all distinct.

*. Theorem 9.7: Assume that M(s) is a matrix of transfer functions taking

* values in Cnxn and assume that each element of M(s) is analytic at s.

00In addition assume that M(So) is nonsingular and .that the singular

values of M(s ) are distinct and ordered so that aI > 02>...>a > 0. Then0 1 n
the Laplacian of the logarithm of each singular value is given by

L .

* *



220

2 log a2 logoi
V. logo1  M + - 2

* (9.25)

W Ev1 H 2M 2 + H 8M 12
2 2 Ok2) x u 1  + Vk T y;}::!k~i (a i k 4

+ IV H 3M 2 + V H M k2
+v i  ay v 3i

Proof: See Appendix H.

Note (9.25) proves that, in general, log 0i is not a harmonic

function. In particular, at points for which V2 logo1 < 0, it follows that

log oi is locally superharmonic [50]. This means that ai can have local

72maxima but no local minima. Similarly, if logo1 > 0, it follows that

log ai is locally subharmonic and can have local minima but no local maxima.

By contrast, recall that harmonic functions can have no local maxima or

minima. Note that the largest singular value is always subharmonic and that

the smallest singular value is always superharmonic.

A final motivation for the additional study of singular vectors

may be obtained by comparing (9.25) to the formulas (9.17)-(9.20) for the

derivatives of the singular vectors. Obviously, if the singular subspaces
H 3Vi H vi H ui H au i3

are constant, vk - vk '- --- and uk Vk#i, must all equal

H 3M
zero. From (9.19) and (9.20), it follows that vk -M ui' etc., must also

2equal zero. Consequently, V logoi 0, Vi. Thus properties of singular i

values, (i.e., the extent to which log ai fails to be harmonic) are related

to that component of singular vector motion given by the motion of the

singular subspaces.

S"- .7.

.. , .. ... . .. . _ . . . . .. .. . . . , . . . . .
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CHAPTER 10

MATMIENATICAL STRUCTURE OF SINGULAR VECTORS, I

10.1. Introduction

The purpose of this chapter is to develop a mathematical framework

within which to study properties of the singular vectors obtained from the

singular value decomposition of a matrix transfer function. Once these

properties have been described they will be used, in Chapter 11, to

explain the meaning of the differential form

i  . dx + vi -ulH dy
T ' -ax --- ui -yJ

r M F M 1y
I' I Hm3M u dx + - Im vi y ui dy

TV x ai Ti

lg= ja dx + dyj (10.1)

.. which was introduced in Chapter 9.

First, it will be shown that the unit sphere in C n , the space

in which singular vectors lie, has the mathematical structure of a

* principal fiber bundle. Using this structure, various notions of the phase

of a singular vector and the phase difference between a pair of singular

vectors can be introduced. A complete set of coordinates for the singular

vectors may be obtained from the phase coordinates just described as well

n-i
as a set of coordinates for the complex projective space CP-. This space

consists of the directions in , a concept introduced in Chapter 6.

lk
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10.2. Fiber Bundles and Singular Vectors

In order to study the differential equations governing the motion

of singular vectors, it is first necessary to describe the structure of the

space in which these vectors lie. The relevant space is the unit sphere in

n
C; in this section it is shown that the unit sphere has the structure of a

principal fiber bundle. This structure naturally allows a unit vector to

be described by giving its direction (see Chapter 6) as well as a parameter

analogous to phase.

First, the set of directions in En will be described as points -

in complex projective space, a manifold with complex dimension (n-I).

Definition 10.1 [51, p. 47; 52, p. 114]: For each integer n identify]R2n

with Tn and denote the points by z- (Zl,...,Zn). Then the unit sphere

S2n- Cn is given by

2n-1n 2
S = {(zI" .. z 1ziI = . (10.2)

2n-1

Define an equivalence relation on S by z-z if and only if there

exists a complex number X with JX -1 such that z- Xz'. The quotient space

S 2n-i/ is denoted by ,Pn-1 and is termed (n-l)-dimensional complex pro- -

2n- 1 n-i
jective space. Given zES the corresponding point in qP is denoted

The vectors in a given equivalence class -can be distinguished by

assigning to each a number analogous to phase. This may be done by choosing

an arbitrary vector z in the equivalence class and defining the phase of

other vectors iE[z] by the rule

a - z z. (10.3)

-s
9["-
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3 In particular each equivalence class may be placed in one-to-one corre-

spondence with the unit circle S by defining a point on the unit circle

in the complex plane by eje, eE(-, T].

UThe above observations may be used to show the unit sphere in M

has the structure of a principal fiber bundle. A layman's description of

fiber bundles and their application to physics is found in [53]; a precise

treatment is found in [54]. The basic definitions and properties of fiber

bundles are now described. Following the mathematical preliminaries a dis-

cussion of their relevance to the study of singular vectors will be given.

The following definitions are taken from [54]. In the interest of brevity,

not all terms will be defined; however, references to the relevant pages of

[54] will be given.

Definition 10.2 [54, p. 26]: A principal fiber bundle (PFB) consists of a

manifold P (called the total space), a Lie group G [54, p. 18], a base

manifold M, and a projection map Tr: P -M such that (A), (B), and (C) are

satisfied.

(A) The group G acts freely and differentiably on P to the right

[54, p. 26].

(B) The map T : P+M is onto and Tr (7r(p))= {pg: gEG}. If x'M,
-1

then 7 (x) is called the fiber above x.

(C) For each xEM there is an open set U with x U and a diffeo-

morphism [54, p. 7]T:7 (U )-UG of the form T (p) ,

s (p)) where s :_ I (U) -*G has the property s (pg)=s (p)g for all

L gEG, pE T- (U ). The map T is called a local trivialization. U

Note (C) states that locally the PFB must look like the product of

the base space with the Lie group.

_ _ _ - -... .--
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Definition 10.3 [54, p. 27]: Let Ta : -1 (U )- U xG and T : (U)+UxGbe

two local trivializations of a PFB 7 : P- M with group G. The transition

function from Ta to T is the map gas : UalUa-*G defined, for x'-(p)E U aU 8,

by goa(x)-s (p)[s,(p)]f. Note that g8 (x) is independent of the choice of- -1

pE i (x) because

s (pg)(s (pg)] s (p)g[s (p)g] - s (p)[s (0-

The following properties hold:

(i) g,,(y) e for all ySU ,where e is the identity element of the

group G.

g(i) ga(y) - [gg (y)] for all yE U, nU,.
(iii) g ( y ) g8 ( y )  -( y ) -e for all yEU. n U Y

The transition functions describe how the products U xG,U xG, etc.

piece together to form the total space P. Thus P may be considered as the

space obtained from the disjoint union (Ua xG) U (U xG) U ... by identifying

the point (x,g)EU xG with (x,g')EU xG if g=g (x)g'.

Definition 10.4 (54, p. 27]: A local section of a PFB 7r: P -M with group G

is a map P :U -P (UCM,U open) such that ivoo = 1 the identity function

on U a
ci

Theorem 10.5 (54, p. 27]: There is a natural correspondence between local

sections and local trivializations.

Proof: If p:U P is a local section, then define T I(U )-oU xG by

T,,(p,(x)g)=(x,g). Conversely, given a local trivialization

,4.(U)-ixG, define a local section p : U -P by- (x) - (x,e), where

• b a.aC OT

e is the identity element of G.
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Definition 10.6 [54, p. 27]: If T is a local trivialization with

Uc=M (i.e., T : P MxG), then TM is called a global trivialization, and the

MM

PFB is called trivial if such a TM exists. A local section P:U --P is

called a global section if U -M. Global sections correspond to global

trivializations.

In the present case the total space is the unit sphere in M

identified with S 2n- Cl 2n , and the base manifold is complex projective

n-i* space Pl. The Lie group is the scalar unitary group

U(1) {e ; EIR} (10.4)

* and the projection map is that taking a unit vector in Cn to its equivalence

class via the relation in Definition 10.1.

Condition (A) of Definition 10.2 means, for the present purpose,

je 2n-i 2n-1
that for each element g- e U( 1) there exists a mapping R :S - S

g,e f 2 n - 1 '
defined by R (z) ,ze z and that this mapping is nicely behaved.

g

Condition (B) means that each fiber of the bundle looks like the Lie group

U(1) and thus like the unit circle SI. This motivates referring to the set

n
of unit vectors in C as a circle bundle over complex projective space.

Condition (C) may be interpreted as stating that locally it is possible to

define the phase of a vector signal. This is now discussed.

The discussion preceding (10.3) shows how one might place each

fiber in one-to-one correspondence with the interval (-TT,7] and thus with

the Lie group U(1). This suggests one way to construct local trivializations.

The definition of 9(i) in (10.3) can obviously be extended to all vectors

not orthogonal to the reference vector z; thus the neighborhood U in (C)

can be extended to include all points in pn representing subspaces of

I'" ''.'''-' . ''. .'- .." '" .. ." ." "-' " ''. representing ,', subspaces of-".. .. "'"
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a n not orthogonal to that spanned by z. The corresponding diffeomorphism

T -(U )-U xG is given by
z z z

Tz (Y) ([y]e Je z (y)) (10.5)

with

::.. e (y) - z H zy, e V(-7,. I
z z

Note that 6z(yeJel) ez(y)+ 6
1 as required. Again, this construction shows

that it is possible to define the phase of unit vectors in Cn locally and

that the domain of definition can be extended to include all vectors not

orthogonal to a given reference vector.

From Chapter 6 recall thate ez(y), defined in (10.5), has the following "
s t

physical interpretation. Given two sinusoidal vector signals y(t)- ye o
s t

and z(t)- z e , then z(y) determines how the signals interfere when

added together:

Ily(t) + z(t) 112 - e x0t + /+RezHy

x t
:-r2 e 0 t+Izy cOSe(y) . (10.6)

If z and y lie in orthogonal subspaces, then no interference takes place;

thus it is reasonable that this definition of phase cannot be extended to

a global definition.

The concept of a local section (Definition 10.4) can be viewed as

': a local choice of a reference, or phase zero, vector in each fiber. This

can be seen from the proof of Theorem 10.5; the reference vector in the

fiber over [y] is given by

- ([y]) - T 1 ([y],l). (10.7)

, .. '. 
-,

*- . . . .. . . . .. . .. .. .
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It follows, given a local trivialization and the local section defined by

(10.7), that a unit vector w may be decomposed as

w ([w])ei z(W) (10.8)

Suppose that a global trivialization (Definition 10.6) existed.

This would imply the existence of a definition of phase valid for all unit

nn

continuous choice of reference vector in each direction of Tn.

Note if such a global trivialization existed, then, by definition,

2n-1 n-l 1there would exist a homeomorphsim T :S - sP1. Now it is a fact from

topology that homeomorphisms preserve the property of simple connectedness.

The existence of the map T would therefore imply that either a) both S2n-

and xs are simply connected, or b) neither space has this property. It

can be shown, however, [55, p. 43] that the unit sphere Sm is simply connected

if and only if m> 1. Thus the unit sphere in Cn, n> 1, is simply connected

1 n-l 1
while S (and thus the product space CpnxSl) is not. This contradiction

shows that no map T with the desired properties exists. Thus it is not

possible to obtain either a method of defining phase of vector signals which

is valid globally nor (equivalently) does there exist a continuous choice of

phase-zero reference vectors.

The preceding concepts will now be illustrated by using the
istandard basis vectors for Cn, e [0 0 ... 1 ... 0]T; i 1,...,n} to

define local trivializations, transition functions, and local sections.

I._
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=~~ .. 2 n - I 1n asmtHeP
Consider a vector p- [ .. 2 nE and assume that e p#0.

Then p lies in the domain of definition of the local trivialization defined

by

Ti(P) - ([p],e ) (10.9)

where

S H
ei(p) _ eip (10.10)

The transition functions gik([P]) and local sections Pi(p]) may

be computed using an arbitrarily chosen vector in the equivalence class [p].

The transition functions are given by

gik(p]) exp[j 0ki] (10.11)

where and are the kth and ith components of the vector . The local

sections may be defined, as in the proof of Theorem 10.5, by

i(p])= exp[-j ) Pil.P. (10.12)

Choosing the local section pi(p]) as in (10.12) may be viewed as choosing

for a reference vector in each subspace that vector with the ith component

positive real. This is possible provided the fiber above [p] is within the

domain of definition of Ti; i.e., provided p #0 . Note that the local

sections are related by

k(p] =Pi([pl)gik(p) (10.13)

while the phase coordinates in different local trivializations are related by

J i(p) j 8k ( p )

e u g([P])e • (10.14)

ilik
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Since the unit sphere in n may be identified with S 2n-1 C R2n

it follows that 2n-1 real coordinates are needed to describe a vector in a

Suppose a vector lies within the domain of definition of the local triviali-

zation T Then Ti may be used to assign a coordinate analogous to scalar

phase to this vector. Thus unit vectors not orthogonal to ei may be

n-ispecified by giving the appropriate point in CP plus the phase

. coordinate corresponding to Ti..

A method for assigning the 2n-2 real coordinates needed to describe

a point in (EPn- is now developed. Note in particular that this assignment

is completely independent of the local trivialization used to distinguish

vectors in the fiber above the point.

2
.- First, consider the ilit sphere in C The set of equivalence

classes under the relation given in Definition 10.1 may be mapped onto the

2 3
* unit sphere S C 3 via a procedure similar to one given by Auslander and

MacKenzie [64]. Coordinates on MP may then be identified with the latitude

2
and longitude of points on S

-T 2
Indeed, let p -p 1  p2] be a unit vector in C . The points of the

projective space P 1 may be placed in one-to-one correspondence with the

extended complex plane via the mapping

z(p) - . (10.15)
P1

4Z_

44

4.;
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*Note z(p) is a function only of the subspace spanned by p. Moreover, it

is not essential to construct the correspondence using the components of p

written in the standard basis. Any other basis would do; this fact will be

used later.

By mapping the extended plane onto the unit sphere, it is thus

possible to place the points of P 1 in one-to-one correspondence with

S 2C R3 . Defining and T by

tan, _g P2 .
1  O

and (10.16)

2 "7 T<7

p1

1
yields a set of coordinates on MP analogous to latitude and longitude

T
(Figure 10.1). Note that the subspace spanned by elm [1 0] maps to the

North pole, N, and that spanned by e2 = [0 1]T maps to the South pole, S.

Thus the local trivialization T1 is defined on fibers above all points on

the sphere excepting the South pole. An analogous statement holds for T

and the North pole.

Now that coordinates have been assigned to the base manifold CP1 ,

explicit expressions may be given for the transition functions and local

sections of (10.11) and (10.12). The local sections defined by (10.12) may be

written in coordinates as

cos (D
0 j (10.17a)

sin e

and
"} ': cos € e - j

,.:2(4,,) = . (10.17b)
.. .. . sin

'.Z"J.'I , . . v . . ... . .: . ? . " ? , . . -: i ., , . , . . ,
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- #=7r/4

96= r/ 2

Figre101.Coordinates onJL CP
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Thus a given unit vector in (9 whose projection has its coordinates in

S 2 - {N,S} may be written, as in (10.8), as

F-cos 1 je1[p s eJ e using T (10.18a).sin 0eJ

and
": [~~cos~be-J] 8

p c -j } e using T2 . (10.18b)L sin,
The transition functions gi([p])= gi(,T) are given by

0, - e-  (10.19a)

7 and

(,) e i. (10.19b)

je1  je2Note that e =g1 2 ( ,0)e as required by Definition 10.3. Thus e2 =e1 +'Y.
3 2-

Note that the expression of S as a circle bundle over S is the

Hopf fibration (55, p. 66]. This construction is very appealing in that it

allows one to visualize the unit sphere in (E2. In higher dimensions,

visualization is no longer possible; a mathematical procedure for construc-

n n-i
ting the space TP from (CP is given in [52, pp. 114-115]. For the

purposes of this thesis it is sufficient to note that a set of coordinates

2n-1 n 2n-3 n-i
for S C (I may be obtained from those for S C C via the following

procedure. Assume that pgn is not orthogonal to eI. Thus p may be'.,

written, using the local trivialization TI as in (10.8), as
je (p)1• J 1 (p  n-1

SP1([P])e . Then coordinates may be assigned to C using the

component p1 to define cos~l I P1I" Thus for n= 2

= Cos e(1.0 7
,'-. 1=j e (10.20)

'"' i' sin ie .
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For n 3

I- 1 je
p sin 1 cos 2 e 2 e (10.21)

L~j~isin 2 e j
~~L si n  1 si 2 e  12

For n 4

p sin %1 Cos 0 2 e J2eJo 1022
2 "j* 2  • 1  (10.22)

sin 1 sin 02 cos 3 e

sin 1 sin 2 sin 3 e

where %iE [0,T/2], Ti (-nw], and G G(-,t]. Again, note that other

assignments of coordinates to 1~n1 ~are possible (for example si could be

. defined from cosol- le2P" 1P2 ) and the phase coordinate defined using T,
-J-

may still be chosen.

3 From (10.20)-(10.22) one can easily see the pattern for obtaining

n n-I
coordinates for CP from those for MP Note that in each case T repre-

sents the phase difference between the (i+l)st and the 1st components of p.

Thus Ti is undefined if either of these components is zero. If the first

component of p is zero, then of course the local trivialization TI cannot

be used. The values of i and T (defined when # 00 and %#2) may still be
i i 2

obtained, however. In particular, any point in CPn -  may be specified by

giving a set of coordinates i and T Similarly to each set of values

of i and Ti (noting q is undefined when € 0 or 7/2) there corresponds

n-i
a point of .

hn S
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3To illustrate, it can easily be seen from (10.21) that for 3 the 2i

local trivializations Ti. T2, and T3 yield phase coordinates

01 " P , 
( 0 .2 3 a )

2 (10.23b)

e 3 1 p 1 3

03 )P3"

Il + 2 
( 0 .23c)

- + 2 - 1).

Thus the transition functions g i gij(@l'2' l' 2) are given by

'j
g12 = e (10.24a)

2.
13 " e 

(0.24b) '-

_j-J 
( 2- 'Y 1)-

(,223)e (10.24c)

'".~~1 
1. (pnI s2n-1,.'

Finally, the local sections O (EP S defined in (10.10), may be
i

3expressed using the above coordinates. For , the local sections

Q. 3i2P 0, , ) corresponding to the local sections T,, T2, and T3 are
1 1 22

Cos1

1 [ sin @ cos 2  e (10.25a)

sin 1  sin 2  e

I
1

I
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j it 1Y

* cos~ 1  e-1

p2 = sin 1  cos 2  (10.25b)

sin 1  sin 2  e

U

Cos ej 2

"P3 = sin 1 Cos 0 2 e (10. 25c)

sin 1l sin 42

The above construction may be used to assign a complete set of

(2n-1) real coordinates to each member of a pair of left and right singular

vectors. Let these vectors be denoted by v and u, respectively. To

S illustrate, assume that v and u both lie in the domain of definition of T

Then v and u may be represented as

-je iu....
u = (ul)e (10.26a)

j e iv"--
v = Pi([vj)e . (10.26b)

(Note the subscript refers to the numbering of the local trivalization Ti

defined using the ith standard basis vector and not to any ordering of the

* singular vectors.)

Recall (Appendix B) that a pair of singular vectors is not uniquely

defined, even if the associated singular value has multiplicity one. If (u,v)

jczis a choice of singular vectors, then (u,v) = e (u,v) is another choice.

Thus the phase coordinates of the vectors, eiu and iv' are not well defined;

• "however, the phase difference coordinate

S.,' . , . . . .. , . , . . . , .. - - . " - - " " ' " " - - " " " - " •. -- 7 . - , . ! - i , i - - ' - : '
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6 (10.27) -
yiv u

is well defined.

One way to give a rule specifying the singular vectors is to

choose the right singular vector to be the phase zero vector in a local

trivialization. The left singular vector is then uniquely determined from

1the equation v - Mu. Thus, given the local trivialization Ti, u may

be chosen so that 8u= 0. It then follows that 8iv = 6is as defined by

(10.27) for arbitrary u and v. Note that these various phase coordinates

may be related via the transition functions glk From (10.11) and (10.14),

it follows that, given an arbitrary pair (u,v),

iei jakSeiv j kv
e = gik([v])e

je je
e iu giA([u])e -.

=> e - gik([V])gik([ue)e (10.28)

where

gi(U]) exp[j Yu i ]  (10.29a)

and
gi([v]) - exp[j kvi]. (10.29b)

The parameterization of singular vectors may now be completed by

assigning coordinates to MPn-1. For example, with n= 2 and choosing the

right singular vector to have phase zero, the singular vectors may be

written using the local trivialization TI as

u lu ] (10.30a)
sin lu e lu
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v2 J3 e (10.30b)

sin 1V eI

Similarly, using T2

Cos lu e

U (10.31a)

L sin Olu

Cos e eo
V e .(10.31b)

sin 0i

The functions in (10.28) relating different phase difference

n-i
coordinates ei may be written using these coordinates on CPn . For

example, from (10.23) for n= 3, it follows that

e el + T -IF (10.3 2a)
2 1 1V lu

a 3 1 2v 2u

2 + '2v-v) -( V 2u-1u)  (10.32b)

4-

As discussed in Chapter 6, the phase difference e i is a measure

st stof how the ith components of the signals v(t)- ve and u(t)- ue

interfere when added together. It was also pointed out that the most

Hmeaningful definition of phase difference is that given by e- u v, since

this indicates how the component of v(t) in the direction spanned by u will

interfere with u(t) when the signals are added. Local trivializations using
iL the right singular vectors will now be developed, along with transition

functions relating the resulting measures of phase difference to the

measures ePi
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Let {ui; i= 1,...,n} be a basis of right singular vectors. Consider

the local trivialization obtained by setting z= u in (10.5)

i--' jeu (p)
Tu (P) - ([P]e i ) (10.33)
i

where

(p) u H P. (10.34)

Note T (p) is defined for all p such that u pO. The components of the
uii

vector p written in the basis ui are given by

L-i.

H

.. p -u (10.35)

L. • np

-. " Since different choices of the right singular vectors will yield

different values for the components uip and the phase coordinate e u(p), it is
inot clear these quantities have physical significance. When the vector p

in (10.33)-(10.35) is the ithleft singular vector vi, however, the coordinate

8 i(vi) uiv (10.36)

H
is independent of the choice of the {u }. (Although the components uKvi ,i .

k i, are not independent.) This fact is appealing since the phase coordinates

defined by (10.36) have physical significance.

J.' .-. .. , .- ; , " , . y - , . . . . . .. ..
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U Coordinates for CP 1 may be assigned to the components of v

written as in (10.35). In particular, it is useful to define

Cos juvi. (10.37)
*i

H
Note that magnitudes of the components ukvi are well-defined (assuming all

• singular values are distinct), but that the arguments are not. Nonetheless,

given a basis of right singular vectors then coordinates Ti based upon the

difference between i UkVi and 4 uivi may be defined.

To avoid notational difficulties, for the remainder of this section,

let u and v be a pair of singular vectors corresponding to the same singular

value; i.e., Au - av. Thus no subscript distinguishing among the singular

values and vectors will be used. Define e e (v) as in (10.36). Assume that
u

both u and v lie within the domain of definition of the trivialization Ti

given by (10.9)-(10.10). Note that, for the remainder of this section, the

subscript "i" will refer to a choice of trivialization Ti. Thus one may

U. write (repeating (10.26)-(10.27) for convenience)

u Qi([u1)e (10. 3 8 a)

and

v ([v])e . (10.38b)
i

where o ([u]) and pi([v]) are the local sections defined by (10.12) and

eiu =eu (10.3 9a)
iu i

s. eiv " eHv (10.39b)

iv i (lO.39c)

.,. , -'. ...- .,., _.. .,- ., . .,- .. . .,- .~ ~~. - . . .... . . . - ..... , , ..' ..- . , -.. . - . , - . .
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Two different methods of measuring phase difference between the pair of left

and right singular vectors v and u have now been defined. The first method is

to measure ei, the phase difference between the ith components of v and u, as

in (10.39). The second method is to use the natural measure of phase dif-

- ference e e eu(v) as in (10.36). From (10.36), (10.38) and (10.39), it may

be seen that 6 and 6 are related by

e - e (v)
u

+o i  U])]H Pi([vl) (10.40)

Define the function gi- gi (u ] ' [v]) by

H
9, ex{j 4 i[([u])1 i([v])} (10.41)

so that

%%e " e Jeig (10.42)

Thus gi may be used to relate the different measures of phase difference

between pairs of singular vectors. Note in particular that g is a function

only of the subspaces in which the singular vectors lie. Expressed in the M*

1 3
coordinates for cPl, and the associated coordinates for S3 , defined by (10.18)

the functions gl and g2 are given by

= g 2 uv'uv

- exp{j4 [cos 0u cos v + sin u sin v e ( Vv Tu)  , (l0.43a)

92 9--2(0uv n'Tv) 0 V 4 b

=exp(J4 [cos Cucos v e - (v- u) + sin usin pv (10.43b) .;

!~~~ ~ v u. .v '% .i.:. -,>> " .- 4"O . ' i: ::--.0 > 4[.- ,. -.:-.- ---- .:.i -i .- ".' ''-.-.
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Finally, suppose the right singular vector ui is chosen to be that

given by the local section pi(u]):

u, P" (u]) (10.44)

(i.e., by setting 0iu 0 in (10.26b)). Then, from (1O.TT), v is given by

V = Qi~ v1)e je "iui

j i
S- pi([v])g i g e

we - p([v])e j e (10.45)
"- ' where '

P([v]) [vlg (10.46)

10.3. Summary

In this chapter the mathematical structure of the space in which

singular vectors lie has been studied. It has been shown that this structure

is that of a principal fiber bundle; this fact in turn was used to study

the existence of a global definition of phase or phase difference for

singular vectors.

By using the phase or phase difference coordinates, as well as sets

L of coordinates assigned to complex projective space (the base space of the
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fiber bundle), a complete set of coordinates for pairs of singular vectors

was obtained. Rules for transforming from one coordinate system to another

were also derived.

An important advantage to describing singular vectors using the

fiber bundle structure is that the concept of direction of a signal can be

formalized. One can assign coordinates specifying the direction of a

signal; given a local trivialization, a phase coordinate may then be used

to distinguish among the unit vectors lying in the same direction.

.........................-•-.. .
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CHAPTER 11

MATHEMATICAL STRUCTURE OF SINGULAR VECTORS, II

11.1. Introduction

The purpose of this chapter is to describe the geometric structure

of the differential equations governing singular vectors. The relation

between singular values and various measures of phase difference between

*singular vectors is explored. It is shown that, locally, knowledge of the

singular values and singular subspaces suffices to determine the phase

difference to within a constant. The fact that the motion of the singular

subspaces affects the phase diffprence is a multivariable system property

which has been suggested by the example in Chapter 8. The generalized

Cauchy-Riemann equations presented in this chapter describe this behavior

mathematically. Thus the groundwork is laid for generalizing the Bode

gain-phase relations in Chapter 12. Finally, a systematic method for

p, deriving equations constraining transfer function matrices is developed.

This method is appealing in that it is independent of coordinates; hence

any set of coordinates may be chosen and the relevant equations derived.

11.2. Differential Equations and Connections in Fiber Bundles

in n
As in Chapter 10, identify the unit sphere in C with the unit

. sphere S 2n-1 C R2n. Consider the principal fiber bundle with total space

2n- 1 n-iS n , Lie group U(1), base space CP and the projection map taking each

vector w to its equivalence class [w] as in Definition 10.1. In this chapter

the projection map in Definition 10.2 will be written as

,............................................................-,-..."........-t........
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1o

i7r(w) -w . (11.1)

This is possible since there exists a one-to-one correspondence between the

n-I
points of CP and the projection operators onto the one-dimensional

n
subspaces of n corresponding to these points.

Given a point wE S2n- , consider the set of curves w(t) through w with

2n-1the property that w(O) - w. The set of tangent vectors at a point wE S

is denoted T S 2n-1 and is called the tangent space at w. Given a vector

XG T S5 -, the differential form w dw evaluated on X is given by "°
w

Xe Tw S n-1 h ifrnilf H dw evltdoXisgvnb

wHdw(X) wH (t) Awl wHX

t-0

where w(t) is any curve satisfying w(O) - w and dw .
2dt t-0

The tangent space to wE S2n -I may be characterized as

T S2 n - I {'XGTIR 2 nI Re[wx] - 01

2n-1 2n-l
T S .," R eWX1-0

In Section 9.3 two subspaces of T wS 2n1with special properties were singled -

out for study. These subspaces will now be characterized.

2n- 1First, let w(t) be a curve in S Then w(t) will be called

H dw
a "minimum energy" curve if the condition w - 0 is satisfied for all t.

The set of all tangent vectors at w with this property will be denoted by

2n-l HH ={XET S 1w X 01 (11.2) -w w

Note it follows from the definition of H that, for all gE U(), thei':. w

subspace Hwg = (Hw)g. 

A second set of curves discussed in Section 9.3 were those of the

jcs(t)
form w(t) = we ) , with w a constant unit vector. Tangent vectors to

S... ' .. -. . . . . . . . ...", ., -,' .' € -'-. "-'-,*-' " ' ' ".""
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curves with this property are given by that subspace of TWS 2n1defined

by

2n-1

*Note that the circle of unit vectors in C lying in the subspace spanned

2n-1by w may be identified with a great circle in S .The characterization

(11.3) of V wstates that the tangent vector to w(t) at w must be tangent

* to this great circle.

For later reference, note that V has the alternate characterization
w

22

V {XE=T S - 1'~"7r*CX) -01}1.)

STo show this, first note that if w(t) is a curve with w(0) =w and dw
dtI

then,from (11.1),

dH
.R [ w(t) )]

10

dw I H dw"
dt w(0) + w(0) d t0

H H
=Xw + wX

The characterizations (11.3) and (11.3)' are then equivalent provided

Hww X -X

Xw H+ wX.0

m7-Y -
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*4

To show this, note that

X + wXH

-W (Xw + wX1 ) + (I- w )(XwH + wXH)

= wWXwH + wxH + xwH  wXH H+ wX

H H Xw e)x w

.w-ww XH+ww X+ X)w

= W(- HwH + XH) + (wwHx + X)w H"
i::~~ ~ ~~ = 1 , +0 x + ,.x +xw ,

where the fact that ww X-w + w"X 0 was used. It follows from

(*) that wwHX + X - 0 - XwH + wXH - 0. Moreover (*) also implies that

(XwH + wXH)w - w(XHwwH + x)w + (wwHX + X)

=Ww + w-w + wX + X

: = -wX- - + wwX + x

X w - X •

Hence XwH + wXH  0 X wwHX.

From (11.2) and (11.3) it follows that the tangent space may be

decomposed as the direct sum

2n-1
T S H $ V . (11.4)
w w w

Again, note the subspace V consists of tangent vectors to that great circlew

2n-"
in S identified with the circle of unit vectors lying in the subspace

n
of C spanned by w. The subspace H consists of vectors normal to thisw

great circle.

"-".
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Now consider the decomposition (11.4) applied to each member of a

pair of singular vectors corresponding to the same singular value. Recall

from Chapter 9 that, if the singular subspaces were constant, then the

logarithm of the singular value would be a harmonic function. Hence locally

-' the properties of the singular value would correspond completely to those of

the gain of a scalar transfer function. From (11.4) the condition that the

singular subspaces are constant is equivalent to the condition that the

derivatives of the singular vectors v and u lie entirely in the subspaces

V and V , respectively. Thus properties of the singular value deviating

from those of the gain of a scalar transfer function must be due to the
* components of the derivatives of v and u lying in the subspaces H and H

v up

respectively. In particular, the failure of log a to have a harmonic

conjugate implies that the measures of phase difference defined in Chapter 10

cannot be related to the singular value in the same way that phase and gain

of a scalar transfer function are related. In order to get a better picture

A of the way in which these quantities are related, it will be convenient to

introduce the notion of a connection in a fiber bundle. It will first be

shown that the decomposition (11.4) satisfies the definition of a connection.

Then an equivalent form of the connection will be introduced which is much

more convenient for doing calculations and gaining insight. This form of

writing a connection will eventually allow a generalization of the Bode

gain-phase relations to be obtained in Chapter 12.

I.,
Cr,
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The preceding discussion may be used to show that the decomposition

(11.4) satisfies -the following definition. Let it : P- M be a principal fiber

bundle with group G (in this thesis always U(1)) and base space

M of real dimension n.

Definition 11.1 [54, P. 29]: A connection assigns to each pEP a subspace

H C T pP such that for V {XET PIir*(X) - 0} the decomposition T P - H a V "J

holds. It is required that Rg*(Hp) -'H pg and that there exist n vector

fields (defined on a neighborhood U of p)that span H q qe U. The subspaceq

Vp is termed the vertical subspace of TP and H p is termed the horizontal

-- t subspace.

for aIn the present case the map R : P-P is given by Rg (w) = we~c ,

. for g e ej . Thus R W -) Xea and, from the definition (11.2) of Hw,"'

it follows that R - -( H wg Thus the decomposition (11.4) is
w wg

indeed a connection.

Definition 11.1 describes a connection as a decomposition of the

tangent space to S2nl. From (11.2) and (11.3) it may be seen that the linear

operator w: T a2n-l {ja } defined by" oeao :Tw 2.

X (X) = H dw(X) = (11.5) -

2n-1decomposes Tw S into the null space of w, (i.e., Hw ) and its orthogonal

complement, (i.e., Vw).

In [54, pp. 29-30] a definition of a connection equivalent to

Definition 11.1 is given; this definition focuses on the linear operator

2n-1
(11.5) rather than TWS For the purposes of this thesis it suffices to

note that w defined by (11.5) is a connection one-form defined on the total .-

space P. It will prove useful to have yet another equivalent definition of a

connection as defined on the base space M rather than the total space.

,',' " : . . . -. ............. .. ... .: .--. ... ,,. ,.........,. .....
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First, some notation will be introduced. If G is a Lie group, then

denote the Lie algebra [54, p. 18] of G by G. In the present case

G - U(l) = {eJ 6 EIR} and G = U(1) 6 {j6GE}. .

Definition 11.2 [54, pp. 30-311: A connection assigns to each local trivial-

ization T -(D )-U xG a G-valued one-form w on U . If T is another local
z o a a a  a "

trivialization and gab :Urn U8  G is the transition function from T. to TB,

then it is required that

-1 -1

W B gua dga + ga .ga6 (11.6)

From the proof in [54, p. 32] it follows that the connection

forms w in Definition 11.2 may be obtained from the connection one-form

w using local sections corresponding to local trivializations as in

the proof of Theorem 10.5. Consider a point xE CP n- with x in U , the

n-l
domain of definition of the local trivialization T , and let Y E T C.

x x

Then w can be defined by

w (Y) = Q*W(Y x )
Ot x O x

= W 00x)

W 0H(.)dp (Y)
L x

or, dropping the dependence on x and YxI

Hp= do ' (11.7)
CA Cc •
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where o is the local section (10.7) defined using the local trivialization

T Recall that different local sections are related via the transition

functions as

P.(x) - pa (x)ga6(x) (11.8)

Thus it follows that

dp dpg9 + Pdg~
H H H

, a dps = a a + Qdg

9 a~a d Cc ot + gs d as(11.9)

-1
Since in the present case gsE U(1),it follows that ga = gas; hence,

* (11.9) reduces to

H -1l H
P dS g sdg + g P dp 9

-1 H (11.10)
9 as dg as+Pa dpa

Thus condition (11.6) is satisfied.

Before applying the various definitions of a connection to the

study of singular vectors one, further definition will be helpful. The

following paragraph is based on (54, p. 37].

Given a connection one-form w on the principal fiber bundle

: P- M with group G, any vector XET P may be written as X + XH, where
~S.' p

V H
X E V, the vertical subspace, and x E H, the horizontal subspace.

Lemma 11.3 [54, p. 371: Given a vector field X on M, there exists a unique

vector field X on P such that w(X) - 0 and ,(X) X for all pE P. The
p 7(p)

vector field X is called the horizontal lift of X.

%,.
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To apply the preceding definitions, let w be a unit vector in C

H
and assume that ei w # 0, so that the local trivialization T. (10.9) may be

applied. Then w may be written as

Sw p oeJL , (11.11) 1
where 6i = ei(w) is the phase coordinate given by (10.10) and o = 0i([w])

is the reference vector given by the local section (10.12).

2n-1
Let a (-E,e)- S be a curve with a(O) - w and let X be the

tangent vector to a at t=0:

X - d c(t) . (11.12)

Then writing at(t) Pi (t)eJei(t), where oi(t) i([w(t)]) and

i(t) _ 3i(w(t)), gives

- (jdt + d )  (11. 3)

t=O

The condition used to define the horizontal subspace (11.2) may then be

,*" expressed as

HH do i de.

wHdw(X) .- +  I-k
-0 (11.14)

. Thus the connection one-form can be written as

H Hw dw d (idci)o ., + j de. (11.15)

It follows that the horizontal subspace may be characterized in terms of

the local trivialization Ti as

2n1 d di d9.

Hw fXE TwSn-3 i  dt + J-XtT1 0} (11.16)

[:" : :< :""> ." ':::.. :": , '- • :-- " :- i: ... ., •
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Recall the differential equations developed in Section 9.3 to

describe the motion of the singular vectors. These differential equations

will now be examined using the concept of a connection.

Let y(t) = x(t) + jy(t), tE [0,11 be an analytic function of t.

Assume the image of y lies in an open connected subset of the complex plane

over which the singular values of M(s) are distinct. By this assumption, at

each point of y(t) there exist n uniquely defined right singular subspaces of

complex dimension one. Let the singular values of M be given the usual

ordering a1 > ... >a and denote the right singular subspace corresponding

to a i(t) by ui(t) - Ui(Y(t)).

In Section 9.3 the problem of determining a (nonunique) right

singular vector given,a well-defined right singular subspace, was posed.

In the terminology introduced in Chapter 10 it can be said that the min-max

n-i1property (6.15) determines curves Ui (t) in the base space CP and the

problem consists of how to "lift" these curves to the total space

2n- 1S n . Motivated by the terminology of Lemma 11.3, the choice of right

singular vector obtained by fixing an initial condition ui(O), setting
du i

u. -0-, and integrating the differential equation

dui H dui
dt k#i ( dt

Hd .__ H H dli
" dt (a 21 2) {iUk -- v + k k d t Li\i- k/

along y(t) will be termed the horizontal lift of Ui(t)ECpn-i to S2n -1 with

. * initial condition ui(O). Note the right singular vector obtained in this

fashion is a "minimum energy" singular vector discussed in Section 9.3; as in

. . . .
.-. ..
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that section, denote this vector by u*(t). Observe there exists a family of

"minimum energy" singular vectors above Ui(t), indexed by the initial

condition ui(O).

* Suppose now that y(t) is a closed curve, y(l) " y(O). Recall from

*H du*
Section 9.3 that the condition u E 0 was interpreted as meaning thatdt

u does not "spin" as it moves. (Until further notice, the subscript "i"

will be omitted.) It was pointed out that if the singular subspace U(t) is

constant, then it necessarily follows that u (t) not spinning implies that

u (1) = u*(O). If 1(t) is not constant, however, then no results were given.

It can now be shown, using characterization (11.16) of the horizontal subspace,

that in general u (1) # u*(O). To see this, assume for simplicity that

H
e1 u*(t) 0 Vt G(0,1]. Then the local trivialization T1 may be used to

characterize Hu,. Equation (11.14) implies

-~ u(1) "e 8 u*(O) i8*.

where

jB - f(PHdQd 1l1a
H, d ~ dP t dt (ll.17a)

(Pf H ao dx + H  -Q dt (11.17b) '

H dx + o - dy (11.17c)

and o Pl is the local section defined in (10.12).

From (ll.17a) it follows that the phase discrepancy B is a function

solely of the path traced out in Cpn-i by the subspace U(t) U(y(t)).

Li
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Thus (11.17) may be rewritten

jan - - f p do . (11.18)
Utt)

Note the integrand of (11.18) is the connection form described in Definition

11.2. For later reference, expressions for this form in terms of the

coordinates on Cp1 and Cp2 given in Chapter 10 are now derived. For n-2,

it follows from (10.17a) that coordinates in U are given by (0,,) and

F cos ¢
Ln e j(11.19): "sino' ej ]

fsino F 0  1
d= o jI do +ej jdp (11.20)

L e sine

II 2
P do j sin2 d. (11.21)

(Note it is still assumed that local trivialization T1 is being applied.)

For n=3, it follows from (10.25a) that coordinates on U are given by

and

.-.- = "cos€1
cOq1

.0= s cosbt e3 l  (11.22)

-sin41 Sino 2 eJ 2

H2 2 2
do:- j sin s (cos o2dip + sin 2 d 2) (11.23)

Elsewhere in this thesis interpretations of the parameters o andK were presented. In examples it may be possible to identify these parameters

... . . . . . . . - ..... * * . . . . .

-'. ".-. -... ... .....-....-. '..............-"-,..'.....' .'-.....i.-..-.........-.-.". .... .



255

with elements of the transfer function matrix written in standard coordinates.

In such cases the expression for the phase discrepancy in terms of the i and

" i may prove useful. This will become more clear later.

In order to apply Stokes' Theorem [49, p. 124] to Equation (11.17),

assume that y(t) is a simple closed curve analytic in t. Then the set

C y(t) ; tE [0,I} is the boundary of a compact subset DCC. Since it was

assumed that the singular values of M(s) were distinct over D, it follows

that at each point s x + jyED the right singular subspaces are well-defined.

Assume that e1 u (x,y) 0 0 for (x,y)ED. Thus the local trivialization T1  -,

may be used to characterize H over D. Write
U*

u pe

• = P1(x,y)eje@(x'Y)
|-

From (11.17c) and the special case of Stokes' Theorem known as Green's

Theorem [49, p. 134]

C P x dx + p y Tdy

C T

fd[p " dx + pH2  dy]

TX 3y
aj + -H 0 + OH a 2 dxAdy

D X y 3 y ax

-

axI ao y a
- Imy -dxdy (11.24)

where the fact that mixed second partial derivatives are equal (Appendix G)

was used. Using (11.21) it may be shown that

3 ff sin 0(- -y - x)dxdy (11.25)
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Formulas similar to (11.25) hold for n> 2 as well. An alternate

method of computing 8 which considers only the set U(D) C Cpn-  will now be

developed. The cases n-2 and n> 2 must be considered separately.

First consider the case n=2 and the mapping U : D- pI. Denote the

1
image of C under the map U C- Pl by 1' and assume that I' is a simple closed

curve in the domain of p. Since (P1 is a compact connected manifold of real

dimension two [52, p. 115], it follows that r separates CP into two subsets;

moreover, r is the boundary of each of these subsets. It is a fact that On is

orientable [52, P. 119]; given an orientation of CP1Iit follows that each of

the two subsets has an orientation inherited from that for (P. Each of

these in turn induces an orientation of r and these induced orientations are

opposite in direction. Choose the subset of (P yielding the induced

orientation of r which agrees with the direction travelled along 1 by U(t).

Denote this subset by A. Stokes Theorem [49, p. 124] then shows that

j f OH0 d)-
. .1..0A

-- f d(p Hdo)

H

"-f(do) Ado (11.26)

Using (11.21)

26 - - f sin2 * dip

- f sin2o doAdip . (11.27)

Note that 3 may be computed with knowledge only of P and its

1
orientation. Further knowledge of the mapping U D- CP is unnecessary.

~~~~~~~~~... :....................................,...................,..j.... &_t, .,,,,........._._,.....:'
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One further interpretation of (11.27) is available. Recall that

*1 2~ 3i foCP is homeomorphic to S CI 3  Coordinates for S are given by

x " cos20 *E [O.n/21

x = sin2O cos WE (-n,Tr] (11.28)

x sin2o sin.

From Spivak [49, p. 131] it follows that the element of surface area on

is

n X1dx2Adx3 + x2dx3Adx1 + x3dx1Adx2  (11.29)

or

2sin2odAd (11.30)

2i Let r denote the curve in S mapped out by the image of

PCCPI , and let A denote the interior of r Then from (11.17a)

1 H d t

j -f 0 d-  dt

1 2
-=jf sin20 d* dr

dt

-jfsin 2 q

-J f sin2o d.Ad-,
A

5

[ ~area of A_ C S2

Thus the phase discrepancy 3 is proportional to the area of the subset of
L 2

S enclosed by r s . Hence if the change in the subspace U is small, the area

enclosed will be small, and so will the phase discrepancy.

.. . . . .. . ..-

* . . . ..... ',.. ~ <' - ~ .. ,

*' - ..i ' i ., " , . .. , .. , ., . - ... . - -" - " . -: - . ' , . ' ' ' - ' .. ' ' " " - -, ' ' " - , - ' . -.' - .. ' ' ' * ' " -, -, 2 ' ' \
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n-i

In the general case n> 2, the mapping from D C C into CP is

a mapping from a space with real dimension 2 into a space with real

dimension 2n-2 (>2 for n>2). Thus r - u(C) is not the boundary of any

subset of Cpn-l However, under certain conditions [49, pp. 109-114], the

image A' - 11(D) is a submanifold of CPU-i with boundary C. (Methods for

verifying these conditions hold are available; however, this will not be

pursued in this thesis. Rather they will be assumed to hold in order to

illustrate the type of results available.)

Stokes Theorem may be applied to show

f H

- - f d~~o).

Hd
=-f d (p Hdp)

H (11.31)= - f (dp) Adn

(Note the definition of A' in (11.31) is different from that of A in (11.26)).

For n3, (11.23) shows that the integrand of (11.31) is

(dz) HAdp j[sin2 1 (Cos 2 2do1 Adip1 + sin 2 2d5iAdW 2)

+ sin 2 1sin2O 2 (-do2AdW1 + do2AdW 2)] (11.32)

Again, it follows that $ is a function solely of the image of r

n-i
in 4Pn, not of the original curve y(t) bounding D C C. Note,

Hmoreover, that since w - dQ is a connection with values

. . . .
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H
in a scalar Lie algebra, it follows [54, pp. 37-39] that dw f (dp) Adp is the

curvature of w. Thus in all cases n> 2 it follows that B is obtained by

integrating the curvature of a connection over an appropriate surface.

The preceding observations may now be used to interpret the meaning

of the differential form

-logoi  alogoiA, j[- dx + dy]
Ai ay ax dy

H am= _im[vi IdM +.J im[viH am u 'i T• x ui dx +  1i Ty i~d

H vi H ui H vi H aui
= [vi a - ui -ax]dX + [vi - ui -a-dy (11.33)

It will be seen (Equations (11.47) and (11.48 that Ai governs how the measures

of phase difference 6 and i change as a function both of the singular values
,I

and the singular subspaces.

First, note that the Laplacian of log o may be obtained from

22
a lo1go i 2oi

SdA, f + dxAdy .(11-34)2  2"

ax ay2

It was shown in Section 9.4 that (11.34) does not in general equal zero;

moreover, the deviation from zero is related to the motion of the singular

vectors. This may also be seen from

2- viH vi , uiH  ui
logo= 2 vI[- (11.35)

(From now on, the subscript "i" will be suppressed when convenient.) Assume

H Hfor simplicity that both ek u # 0 and ek  v # 0. Then u and v may be
Lk

written in terms of the phase coordinates and local sections given by the

local trivialization Tk defined using the standard basis vector ek as in

(10.38)-(10.39):

C; - - - . .• - - . , . , - . - . . - -• • . • . . . " -" , " -" . " " - . ' .. ' ' ' ' ' - .< . , , ' . " .
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SU k ej ekuu ku

and (11.36) ,

V-. ej ekvV a P e-V v

where p 0k(S)]) and kv Qk([V(s)]). (Note that pk is a local -

n-il
section, not of the original bundle over CP-, but of its pullback along

n-i
the map [u] D- CPn . A similar comment holds for pkW If u is chosen

so that ek 0, then (11.36) becomes

U uk
U " ,u  

°

and (11.37)

V kv ek."

with

9k Gkv k u

The form A may be rewritten as

A J[- dx + JL dy]

Cy ax

= [ H °kv H aku k d
kv ;x ku Ox axr"r

: ku j dy (1.38)

1kv 3y lku a a

From (10.45) it follows that v may be rewritten in terms of the I
H

phase difference 4u v:

v j e

v~ ee (11.39)
A-

where o - n([v(s)]). Using the function g (10.41) it follows from (10.42)

that

,r-o ° ° .. .. . . . . .. - . . . - . , - . . , ° ~ . ° -
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e k 1- + gk (11.40) -
ax i+ k ax

and from (10.46) that

H 'v H aPkv -1 lgkPv 7T Pkv ax 9k ax (11.41)-

Using (11.40) and (11.41) and similar equations for derivatives with respect

.. to y,it follows that (11.38) equals

A = - °loga + aloga dy]
ayx

H a Pv H ao ku
= v+vj -dx7T Pku _5x a

H 0v H Pku 8
+ Pv -Pku + j y]dy (11.42)

Rearranging the form (11.38) yields

_____ al112 -Md' \ a + dx + J\ al-2 y
ay ax a

[Pv kv -  H  oku Idx+ 1H H Lkv ..Hl!U]dy (11.43)
k ax k axkv 3Y 0ku (1143

and rearranging the form (11.42) yields

(aloga + e' L 4  aloga -aeN

.'." - : log + j O!9 f  dy

S.ay ax J ax y

a0 j H v Ha[ aH- ku ax ]dx+[p v ay ku aY]dy y (11.44)

je
Suppose aek (respectively, ae were analytic. Then log a and

Z (respectively, log a and 6) would necessarily satisfy the Cauchy-Riemann

- equations. This is possible, however, only if the right hand sides of (11.43)

(respectively, (11.44)) are equal to zero. These equations quantify the extent

by which motion of the singular subspaces prevents aejek and aeje from

satisfying the local gain-phase relations given by the Cauchy-Riemann equations.
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Indeed, if y(t) is a curve in 9, then the left and right singular subspaces

map y(t) to curves V(t) and U(t) in gpn-l.

2n-1Recall now that a left singular vector v(t)E S is said to be

"minimum energy" if vH T 0. Given a curve ) determined by a
dt-

left singular subspace, a minimum energy left singular vector above V(t) will

be denoted by v*(t). From Lemma 11.3 it follows that requiring v*(t) to be

minimum energy above V(t) is equivalent to requiring that the vector field

tangent to the curve v*(t) r S2n- be the horizontal lift of the vector field

tangent to the curve (t) E CP . Now, from the characterization (11.16) of

the horizontal subspace, it follows that the rate of change of the phase

coordinate assigned to v*(t) by some choice of local trivialization is

determined by the rate of change of the corresponding local section o with

respect to a minimum energy vector. This latter rate of change is given by

2n-1
the difference between the tangent vector to P(t)E S and the horizontal

lift of the tangent vector tO '(t) . Moreover, the value of this rate

of change may be found by evaluating the connection form pHdo on the tangent

vector to V(t). A similar discussion can be made concerning u*(t), a

minimum energy singular vector above the right singular subspace 1(t).

Now consider the forms (11.43) and (11.44), which show how the

functions aejek and 0e fail to satisfy the Cauchy-Riemann equations.

Evaluating these forms along a tangent vector to a curve y(t)E C shows that

this failure is quantified by the difference between the deviations of the

local sections above 0(t) and 1(t) from minimum energy vectors above these
1-

curves. Hence V(t) and U(t) are the images in CPn-i of the curve y(t) in

under the maps [v] y-* CP and [u] y- CP respectively. These latter

maps are those which determine, via the mini-max principle (6.15), the
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singular subspaces in which the left and right singular vectors are

constrained to lie. From the discussion following Equations (11.36), it

follows that the connection forms which measure the failure of the local

sections to be minimum energy vectors are now no longer defined in the

n-l
original circle bundle over CP , but in its pullback along the maps

n-l n-l[v] Y-CP and [u] : y- SP , respectively.

One method used to gain insight into the behavior of scalar

transfer functions was to use an analogy with two-dimensional potential

theory [27). This analogy is also used in explaining theory of harmonic

and analytic functions [56,63]. An interpretation of V loga is now given

using such an analogy.

Think of the gradient vector 7loga ff  , 3yl a as being

the velocity vector field of a fluid flowing in steady state along the surface

of the complex plane, and identify C with IR. Let C be a simple closed

2curve in IR parameterized by y(t) = (x(t),y(t)), a < t < b. Assume that

y is traversed counterclockwise and that Vd = 1. Then the outward
2

pointing unit normal to y(t) is given by t dx Thus, if
( dt' dt/

Sloga " N - (- dt + dty ) is positive at a point of C, then• y dt ax dt

fluid is flowing out of D (the interior of C) at that point. The net fluid

flowing out of D is given by the integral

net flow = log a (dy,-dx) (11.45a)

dyQogG dx + a dy) (11.45b)9 y dx+ x

b 9log dx+ log dt . ( sc)
;y dt x dt

i
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Using Stokes' Theorem,

,~~ ~ ~~ lo lw- 81go + lo1go
net flow \ ( 2  y2l dxAdy (11.46)

D ax a

Thus if log a were harmonic, the net fluid flow would be zero.

For the largest singular value, (9.25) shows that 2og a > 0. Thus the

net fluid flow out of D is positive. Similarly, for the smallest singular

value 2log a < 0. Thus the net fluid flow out of D is negative. For

intermediate singular values no general statement may be made. However,
n

t since det M(s) is an analytic function it follows that logIdet M = H logoi
i=l

is harmonic. Thus the sum of the net flows (11.46) over all singular values

must be equal to zero. For example, in the case n-2, it is as though the

excess fluid entering the region D from the flow Vlog a is somehow transferred "-

and leaves D in the flow Vlog a.

From (11.43) and (11.44) it follows that equations analogous to

the Cauchy-Riemann equations for ae' and oejo are given by

H kv H ku
j yx kykv 7y ku ay

j (aloga '6k) H kv H "0kuSy + = - + (11.47)

and

* ~ %loa _ O\_ H av H 3 ku
\al:a ax -y y/ v 7y- ku ay

j(2129 + W Hp v H ku
,"-D y x) -v (x11ku x .48)

Note the right hand side of (11.48) may be obtained from that of (11.47)

using the function g
tk

-ls

- , " ". ... ..- , - " ," , ; " - . " "- . , - - . ." ' ' . " ,- " " . - .. ."" ,,
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H kv H 33v -1 agkOkv a--- =v -ax + k x-

SH kv H v - k

H HT (11.49)"kv y v 3y- k --y

* where it may be shown from (11.40) and (10.41) that

-1 gk { H
gk -x -x Okupkv

-1 agk a H- y -y kupv (11.50)

Equations (11.47) and (11.48) may be expressed in coordinates

n-1on CPn  . For the case n-2, k=l:

alog 1 sin2 v 2 u

31ogo 1 -i . si 2 su (11.51)
3y xv + sin2u

and

Dloga 3 .in2 t v sn2 P u
I _n-- - -ui

3X ay V yU ;y

-- coso Cost + sin u sin v ej
( v - u) ]a y [°Sv vos v

alog + 3 . 2 sv + 2i u
y x v ax u ax

+ -2 [coso cost + sin u sins ej \vu) (11.52)

Similar equations may be derived for n> 2 and for other local trivializations

Tk'

A differential one-form w(x,y) = A(x,y)dx + B(x,y)dy called exact

3ff
if there exists a function f(x,y) such that df = = dx + _L dy. If mixed

;*• *.
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2'- a 2f 2f.

second partial derivatives of f are equal, then dw d2f (-- -

dxAdy = 0 and w is said to be closed (Spivak [49, p. 91]). A standard

result is that all exact forms are closed. Thus if two one-forms w and

W'2 differ by an exact form,it follows that dw1 . dw2 . Recall it was shown

in Appendix G that, at points where the singular values are distinct,

partial derivatives of all orders of the singular values and vectors exist.

Moreover, away from singularities in the coordinate systems used to describe

the singular vectors, this property is preserved so that, in particular,

mixed second partial derivatives of 6,ek, 1v' u' etc. are equal.

Now, consider the forms (11.43) and (11.44). Since de and de appear

on the left hand side of these forms it follows that (11.43) and (11.44)

differ from the form A in (11.33) by an exact differential. Thus taking d

of the left-hand side of (11.43) or (11.4) yields the Laplacian of log a

just as in (11.34). Using (11.51) in (11.43) and taking d gives the Laplacian 4
in coordinates

-21 = sin2 v ay ax

U" 3u u aou alpu)

- s u y u u (11.53)
sin ax ay ay 3x/

Equations for 72e and 2 e may also be derived from (11.43) or
k

(11.44). Thus what can be done using the star operlator [54]? For our purposes

2it suffices to define * for one-forms on IR. Let w = Adx + Bdy with A and

B real valued functions of (x,y); then *w -Bdx + Ady. Note that if

f tf (f 2 + f 2
= df dx + -L dy, then ,A*, [(nX) +(-) ]dxAdy. Note also that the

integrand of (1.45a) is just *d(log j).

%. .
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Applying the operator * to (11.43) and using coordinates yields

(for n=2 and k=1)

!I, al / aloga o

Ka x y (11.54)

sin2 -sin 2 u dx + 2 si2 0 xdy

An equation for V2  may be obtained from (11.54) by taking d of both sides:

2/ (o a~vp ao atj,
2-(-v v v )

in2 o ay ay ax ax

+ sin2 u + u u -
U y a y ax ax

v2 v +~i aJ\ 2 
Y2

2sin 2 o - + sin2ou( 3x-- + 2u (11.55)
ax 2 y 32 ax 2 a

Note that in general V2; V O; the form (11.54) and the analogous form

obtained from (11.44) do not differ by an exact differential.

11.3. Cauchy's Integral Theorem and a Simple Method for Deriving

Differential Equations

In Section 11.2 and Chapter 9, a number of differential equations

were derived constraining the properties of a matrix transfer function.

The basic strategy was to obtain differential equations for the singular

am- am
values and vectors of a matrix M(s) in terms of 7x and -y. By then

observing that M(s) must satisfy the Cauchy-Riemann equations,it was shown

that the singular values and vectors are not mutually independent functions.

By assigning coordinates to the singular vectors it could be shown, for

_ :1
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example, that knowledge of the singular values and singular subspaces

determines the phase difference parameters ei and to within an arbitrary

constant.

It should be pointed out that the generalized Cauchy-Riemann

equations (11.47) or (11.48) are not the only ones constraining the behavior

of the transfer function matrix. Lemma 9.6 may be used in conjunction with

the differential equations (9.17)-(9.22) to show that additional constraints

on the singular vectors, and thus the coordinates Oui, Cvi u and

must be satisfied. Rather than list examples, a systematic method for

deriving a complete set of generalized Cauchy-Riemann equations will now be

presented. The basic philosophy is that constraints on system properties

imposed by local analyticity of transfer functions are completely known.

However, this knowledge is expressed in standard coordinates for the matrix,

while other coordinates are more meaningful in assessing feedback properties.

Thus the goal is to study how constraints imposed by local analyticity

manifest themselves after coordinate transformations.

In addition to the Cauchy-Riemann equations, locally analytic
-4=

functions must satisfy Cauchy's Integral Theorem [26,48]. Let f(s) = g(s) +

jh(s) be locally analytic in s over a simply connected region GC C, let C

be a simple closed curve in G, and let D denote the interior of C. Then -

f f(s)ds - 0 . (11.56)
C

One way of proving (11.56) is to use the Cauchy-Riemann Equations (9.1) and

Stokes' Theorem [49, pp. 105-106]. Thus -

--................-..... ............
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f f(s)ds , f dfAds , (11.57)
C D

where

dfAds dx + if- dy A(dx + J dy)+~)
ax a y J dxAdy

=0

by (9.1). When applied to the nonanalytic function log a + j 6, Stokes'

Theorem yields

f (log a + 3 6)ds - f dlogaAds + 3 deAds
C D (11.58)

fo- + j \ ay a') dxAdy.

D lo a aye

If e is given by (11.39), then the generalized Cauchy-Riemann equations

(11.48) show that (11.58) does not generally equal zero. Thus the same

motion of singular subspaces which prevents aej0 from satisfying the Cauchy-

Riemann equations also prevents Cauchy's Integral Theorem from being satisfied.

Similar remarks hold for the function ce k, with ek defined as in (11.37) and

generalized Cauchy-Riemann equations given by (11.47).

Since each element of a transfer function matrix M(s) written in

standard coordinates is locally analytic, it follows that, under the conditions

on C given prior to (11.56),

fM ds 0 . (11.59)

C

I.-

!- . .. . . . . . . . . . . . . . . . .
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Equivalently,

dMAds 0 ,VsED . (11.60)

Condition (11.60) is the key to seeing how the property of analyticity

generalizes to nonstandard coordinates. Write M in terms of its singular

value decomposition

M VEUH (11.61)

Then

0 = dMAds - (dVAds)U F + V(dEAds)UH + VE(dUHAds)

[dVEUH + VdEUH + VEdUH]Ads =0

Z r-dSAds = - [dUHU + -'VHdV ]Ads (11.62)

By writing, e.g., dZ 7 dx + T. dy, (11.62) reduces to 2n partial

differential equations which must be satisfied by the singular values and

vectors of M(s). For example, writing

Z - diag[a] c I

V = [v I  * " v (11.63)

I n]

yields (assuming n-2 for simplicity):

[do~l1 F H Hu Fii 2 H 10Ads dl g- 0 dulu duu vldv 2 vl dv2

dl.A d - % H ,ds.
0 dlog2 du2H u du2Hu 1 H 1 v2 Hdv

-i L2 1 2 U 2 -J LF

(11.64)
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Taking real and imaginary parts of the four components of (11.64) yields the

eight desired equations. If so desired, coordinates may be assigned to the

singular vectors. Then the diagonal elements of (11.62) yield generalized

Cauchy-Riemann equations relating the singular values to measures of phase

difference between the left and right singular vectors.

Note also that the same technique may be used to obtain differential

equations which must be satisfied by other decompositions of a transfer matrix.

Examples are the polar decomposition [14] and eigenvalue-eigenvector

decompositions.

2Note also that 2n equations analogous to the Laplacian may be

derived using the "d" and the "*" operators. From (11.61) it follows that

dM - dVEUH + VdEUR + VEdUH

" VHdMU" VHdVE + dE + ZdUHU

S z-vHdMU = V lvdv + Z-ldZ + dUHU

UHM-ldMu = -vHdvE + E-IdE + dUHu (11.65)

assuming that M exists. Note that the diagonal elements of E-IdZ are

given by
alogo i  3logo i '-F

"dlg a dx + oy dy . (11.66)

dloo~ ax 3y

Applying * to (11.66):

lgi lgi ii*d(loga dx + ox dy . (11.67)

*d~og~)ay ax

.. ................. ...*.*.~............ ....-... "
) :''-?.'- .2";.,.- .. :-?..' ?.:. -.i . - . . . *. '. "i . '"" 2- . ;.'; : ".i - : . " -. . :'',-'2" .-
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Applying d to (11.67):

d*d(logo1 ) =( -- + - ) dxAdy (11.68)
ax2  ay

matrix equation which must be satisfied by the second partial derivatives

of the singular values and vectors. In particular, the real parts of the

2diagonal elements of the equation give formulas for V logoi.

11.4. Summary

The purpose of this chapter has been to explore the mathematical

structure of the differential equations governing singular values and vectors. .

It was shown that geometric ideas lend themselves readily to the analysis

of properties of these equations whose study was originally motivated by the

thought experiments in Chapter 9.

Finally, it should be pointed out that the differential equations

discussed in Chapter 9 and in this chapter group themselves into two distinct

sets. One set, which will be termed analysis equations (e.g., (9.12), (9.13),

(9.19), (9.20), and (9.25)), may be used to obtain the derivatives of singular

values and vectors in terms of derivatives of the transfer function matrix.

Thus they are useful in determining the properties, of a specific matrix.

The other set of equations (e.g., (11.43), (11.44), (11.51), (11.52),

(11.53), and (11.55)), which will be termed design equations, give relations

among the derivatives of the singular values and vectors which must be

satisfied by any matrix transfer function. Thus these equations, in
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principle, play the same role as do the Bode integral relations. They constrain

the behavior of physical systems and thus limit the properties which may be

achieved in feedback design. The difficulty, of course, is that it is very

* hard to get any insight from the differential equations. Thus in the next

chapter a generalization of Bode gain-phase relations to multivariable system .

- is pursued.

.4'

'..
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CHAPTER 12

GENERALIZATION OF BODE GAIN-PHASE RELATION
TO MULTIVARIABLE SYSTEMS

, 12.1. Introduction

In the previous chapters the concept of a local trivialization

has been used to express the left and right singular vectors in coordinates.

The resulting sets of parameters each included a measure of phase difference

between the left and right singular vectors. In Chapter 8, an example was

presented which suggested that the function oe could be related to feedback

properties in much the same way as could a scalar open loop transfer function.

The relation between a and e, however, was clearly not that between the gain

and phase of a stable minimum-phase rational transfer function. This motivated -_

the study of just how these two functions were related. Towards this end,

differential equations analogous to the Cauchy-Riemann equations were derived.

These equations showed, in principle, that 0 and a were related as a function of

the singular subspaces. It was not clear, however, that such generalized

Cauchy-Riemann equations provide much insight into the nature of this relation. .

Motivated by the Bode gain-phase relations for scalar feedback systems, which

provide more insight than the scalar Cauchy-Riemann equations, one is

naturally led to ask whether analogous integral relations may be obtained for

relating 8 and log a. The purpose of this chapter is to provide such a

generalization and, in particular, to study the effect of motion of the

singular subspaces.
! 4-

. . . . . . . . .
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12.2. Integral Relations Among Singular Values, Phase Differences,
and Singular Subspaces

In Chapter 11 the one-form

A log ai  a log aiAi ay dx + dy]

,:ImC v ' u]dx + J_ Imv Ha ui]dy
pi i

H avi H aui H avi H 3ui
H v, Hi -a-I il (12.1)S[vi ui dx +  vi y lay I d

was studied. It was shown that (12.1) relates the singular values to

various measures of phase difference between the singular vectors. Assume

that both the left and right singular vectors may be assigned phase coordinates

using the local trivialization Tz, as in (10.5). (For the remainder of thisaz
chapter, the subscript "i" used in (12.1) to distinguish among singular values

' will be suppressed unless a specific singular value or singular vector pair

is being discussed.) Then, using T, the left and right singular vectors

may be written as in (10.8)

v(s) - 0 ([v(s)])ie j (v(s))
z

(12.2)

u(s) " ([u(s)])e J ez (.u(s))
z

where in this local trivialization the phase difference is given by

Ae (S) - Z (v(s)) - 8z(u(s)) . (12.3)*'- zz

Two examples of local trivializations were singled out in Chapters

10 and 11. The first used one of the standard basis vectors to define the

H
phase of a vector w by Ok(W) = ,e w as in (10.10). The second used a right

singular vector u to define phase as a (w) -uw as in (10.34).

. ' ., * .- . . ,
,-. -* .. .. -, , *. . .. . . .. - - " . . * *. *,. , .,,,%W
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4 In the remainder of this chapter, the subscript "z" will be

suppressed in (12.2)-(12.3) unless a specific local trivialization is being

discussed. Given any local trivialization, writing the singular vectors in

terms of the local sections and phase difference coordinates as in (12.2)

and substituting into (12.1) yields:

eoH v H u7A-. d a loy c dx + a oga dy + [ ]dx8xx +y 3 ax ax u a

ap ap+-. H v H (
+ J v ay -u7y) dy (12.4)

where P o(v(s)], P pn[u(s)], and Ae=ae(s).v u

In principle (12.4) may be used to calculate Ae(jw) as a function

of the singular values and singular subspaces; i.e., assuming that the images

of the left and right singular subspaces lie within the domain of definition

of the section p, then
"-- a o H ap v H 3Pu

j) + log + + y Pu -)]dy+6e(-) (12.5a

ax v a

and

a H p -

ax + J ( v Py - u )]dy+Ae(j). (12.5b)

Hence

ae(jw) - 2+660M W 9 log a dy + log a dy]

-H ap v H a0 u H 3v H
ay -. pu - )+3 -,u-) dy] (12.6)-' '"2 U y N u 3 y J v3y u'

W W

If aeJ were a stable minimum phase proper rational transfer

function, or if the singular subspaces were constant, then the second term

........ ........ ........ . i i..... ........ ........
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on the right hand side of (12.6) would not be present. Thus (12.6) would

show that the value of A6 is completely determined by a, and Cauchy's

* integral theorem could be applied to show the function aejAG must satisfy

a Bode gain-phase relation as in Theorem 2.2.

- In general, however,oe Ae is not analytic and Cauchy's Integral

- Theorem cannot be applied. However, an integral equation analogous to the

Bode gain-phase relation may still be derived using Stokes' Theorem.

First, the behavior at infinity of the singular value decomposition

will be discussed. Generally, the singular values will not be distinct at

s= -; in fact, in many cases of interest they will all be equal to zero. The

followsin Lemma states conditions under which it remains possible to uniquely

define one-dimensional singular subspaces at s =

Lemma 12.1: Let the matrix M(s) taking values in (T n have entries which

- are proper rational transfer functions. Assume that det M(s) 0 and that

the singular values of M(s) are distinct in the closed right half plane

(CRHP). (Note this implies that the singular values may be ordered so

that, VsECRHP, al[M(s)] >a 2[M(s)] > ... >a [(s)].). Then there exist1 2 n
constants k.> 0 and ci >0 such that for any ae[-/2,Tr/2]

k
lim R ic [M(Rej )]= ci. (12.7)

i iR--

Next assume, Vi and j, that if ki = k., then c #cj . Then Vi there exists a
J J,

pair of unit vectors wi and zi, lying in uniquely defined one-dimensional

* subspaces M and Zi, such that for any aE [-7T/2,7/2]

.kiw
c i  lim (Re)wHM(Re (12.8)

Proof: See Appendix I. S

,. .'... . ... .. {C2 . ... , . . ..... .. •...LC'I L ~ I L~ . j. : : !.> , ,. . ,.. . . ,- . . . . . . . .... .
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Suppose that the vectors wi and z in (12.8) exist, and that these

vectors both lie in the domain of definition of some local trivialization

T. Then, by continuity, there exists a neighborhood of infinity such that

the left and right singular vectors vi and u also each lie within the

domain of definition of T. LetAei be the phase difference (12.3) between

vi and ui as measured in this trivialization. Then as s- along the ray
Re3 a

Re~a, aE [-r/2,1/2]

A - e (wi) - (zi) -kit.

This follows from (12.8) since, as R - , the right singular vector may be

chosen so that ui(Re ) - z ; the left singular vector must then satisfyia k i

(ReJ) -) i wi M (-L)Rki M(ReJ )z .

Theorem 12.2: Let the matrix M(s), caking values in nn, have entries

which are proper rational transfer functions. Assume at each point in the

closed right half plane (CRHP) that M(s) satisfies

i) M(s) is analytic

(ii) det M(s) # 0

(iii) M(s) has n distinct singular values.

Note that at each point sECRHP there exists a local trivialization whose

domain of definition includes both members of the ith pair of singular

vectors u and vi.

(iv) Assume that there exists a local trivialization T such that,

VsE CRHP, ui(s) and vi(s) both lie within the domain of

definition of T.

L .......... . . . ... ........... .. .. ..
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Finally, assume

- (v) in Lemma 12.1, if ki = k i #j, then ci  c

(vi) the domain of definition of the local trivialization T given

in (iv) also includes the vectors wi and zi given by Lemma

, 12.1.

Let T be a local trivialization satisfying (iv) and (vi). Note that at

each point s ECPMIP the left and right singular vectors and the phase difference

corresponding to the singular value a may be written as
jGAJ e (v)

V ve j ov A P([vl)e (12.9a)

Jou A jO(u)
u = p ue P(u])e (12.9b)

Ae - 6(v) - 6(u) (12.9c)

Assume the local trivialization has the property that o([w]) = 0([w])•

Then cexp[jA0] is conjugate symmetric, A6(0) = k7, k an integer, and for

each w >0

do log a

Ae(jwo) - Ae(O) - d {log coth 2 }dv
0 1 v H u

+ f ( - u -v H u )drAda (12.10)

= log(---) . (12.11)
0

Proof: See Appendix I.

Theorem 12.2 shows that the measure of phase difference .1e(jw) may

be computed from knowledge of the associated singular value and singular

These assumptions may be relaxed.p•

, - . .. . .. . . ..A . ., .. .A- : . . . . . . . . . . .. • . ... . - . .- . . . . . .
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subspaces. Thus in one respect,Ae(jw) is similar to the phase of a scalar

transfer function. Once enough of the other properties of a system are
-C.t

specified, there is no freedom remaining to specify AO(jew). There does

exist an important difference, however. The phase difference A6(jw) is a

function, not only of the gain a along the jw-axis, but also of the way in

which the input and output directions vary over the right half plane.

An interpretation of the inte-rand of the second integral in (12.10)

will now be developed. Consider the differential form Ai in (12.1) evaluated

along a curve y(t)EC. Then, suppressing the subscript "i" used to distinguish '

among singular values, this yields

-loga dx alo t= Im vH dM u
Dy dt 3x dt ~ a

H dv H duV vdt U t " (12.12)

The discussion will proceed by showing how the right hand side of (12.12) is

related to the integrand of the second integral in (12.10). First, given an

arbitrary unit vector w, the meaning of the term wH  (the component of the

derivative of the vector lying along the vector itself) will be explored.

Let the unit vector in question be written as

je(t)
w(t) p(t)e (12.13a)

where

P(t) p([w(t)1) (12.13b)

is the local section corresponding to the local trivialization used to assign

the measure of phase

e(t) - e(w(t)) . (12.13c)

~~~~~~~~~~~~~~~~~~~~..'.-..- . .....- ..-- "..-....."..........,.,....€ ......... .. ... ... ... .., . "..-.-".. ".°.
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Then,

H dw H A jw t P +t J t (1 2 .1 4 ) --

To explore the significance of (12.14), first recall that a unit vector

defined along a curve through P n-I is said to be "minimum energy" if

w 0. This condition, in turn, implies that the vector changes along

- the curve by only the amount needed to remain in the appropriate subspace of

Consider first the case in which the subspace spanned by w(t) is

constant. Since the local section P is a function of (and only of) this

subspace, it follows that do-= 0. Thus, in this case, the "excess energy"
dt

H dvmeasured by a nonzero value of w T translates completely into a change in the

phase e. In this way, the vector w(t) is analogous to a scalar allpass

function (i.e., a function whose magnitude is constant with t). (Note also

the condition that the subspace spanned by w(t) is constant implies that w(t)

moves along the great circle of S 2n-  identified with the circle of unit

vectors of Cn lying in the subspace spanned by w.)

Now recall the thought experiments discussed in Chapter 9. These

suggested that there exists a component of the motion of a unit vector

H dwanalogous to "spinning," and that the measure of spinning is given by w

Hence, minimum energy vectors are those which do not "spin" as they move.

It was further conjectured that the spinning of a unit vector might be related

to some measure of the changing phase of the vector. Moreover, when a pair

H dv H du V.-
of left and right singular vectors was considered, the difference v T- u dT, .,..

interpreted as the difference in the rates of spinning of the vectors, was

conjectured to be related to some measure of changing phase difference between

.. ~ 4 . 4 4 4
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the vectors. In Chapter 9, these conjectures could not be investigated, since

no rigorous notions of phase of a vector, or of phase difference between

vectors, were yet available. Using the ideas about phase developed in

Chapters 10 and 11, these conjectures will now be explored. The essential

equation is (12.14).

Now, as has just been pointed out, in the special case where the

H dw
subspace spanned by w(t) is constant, the value of w T is indeed equal to

the rate of change of 6, the measure of phase. Moreover, this conclusion is

independent of the trivialization used to measure 6. Recall next another

rspecial case introduced in Chapter 9, i.e., that in which the vector w is

minimum energy (but the subspace it spans is not necessarily constant). From

(12.14) it follows immediately that the measure of phase 6 may change even if

w T - 0. A necessary and sufficient condition for this to occur is that the
H Not

section p not be minimum energy; i.e., that p 0. Note another necessary
H dw d9

condition for w - j is that the subspace [w(t)] not be constant. This
dH do

is not a sufficient condition, however, since the component p H must also

be nonzero.

Finally, consider the general case, in which w T 0 0 and the
dt

subspace spanned by w(t) also is changing (implying that !! 0 0). It follows

H dw
that the value of w dt measures, not the rate of change of the phase e,

but rather the rate of change of the difference between 6 and the phase a of

* n-ia minimum energy vector w (t) traversing the same path through CPn. This may

be seen easily from (12.14), from which it follows that the rate of change of

W* H Hdo
the phase of w (t) is given by j d-- .- P_. In the general case,, dt - d"

--vde H dw dO
therefore, J dw __ + J -.* -:: dt dtI
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Not tht te vlueof H dw
Note that the value of wH d is independent of the local trivial-

ization used to define phase. The rate of change of the difference

-e e however, is not so independent. This is because the rate of change

of the phase 8 of a minimum energy vector is a function of the local

trivialization used, as is the value of the component p d of the derivative

of the corresponding local section. Thus, from (12.14), the value of the rate

Hdwof change of e is equal to the difference between the component w T and the
H d

value of the connection one-form p dP evaluated on the tangent vector to the

L curve through pn-i traversed by [w(t)]. This latter term, of course,

quantifies the amount by which the section p itself deviates from being a

"minimum energy" vector. Finally, observe that once a local trivialization

with which to measure the phase of w has been chosen, then the discrepancy

Hdw d n-
between w - and - is a function solely of the path through CP -1 along

which w(t) is constrained to travel (equivalently, the way in which the sub-

space [w(t)] changes.) This follows since choosing a local trivialization

implies a choice of rule for defining the local section p, which in turn is

a function solely of the subspace in which the vector w lies. In some sense,

it may be said that changes in the phase e arise from two sources. One

H dwsource is the value of the component w T while the other source is the

motion of the subspace [w(t)]. This latter source will now be studied

further.

It is instructive to write p in coordinates so that insight may be

gained into how motion of the subspaces produces a change in phase. Assume

Hthat the local trivialization used to compute e is given by e = z M ZlW,

where z1 is a constant unit vector. Choose constant vectors zi, i=2,. ..,n.

so that (z .iul,...,n} is an orthonormal basis for C Then

s z ; ,.7
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n
p-"Z([W]) - E zi(zip) (12.14)

11 1"

where z p is a positive real number. Thus

= zi(zi )(12.15)

n
H dP n H H

dt (p zi)(zi dt" (12.16)

Write

tie zp , (12.17)

n 2
where Z r i -1 since {z i } is an orthonormal basis and P is a unit vector.

i=Note, also thta-O inceci ~
also that a=0, s e = z1p, and this component of p is positive

real since the vector z1 was used to define the local trivialization for which

n dri

P is the local section. These facts imply, in turn, that Z r. - _ -

1 d n 2 daI i-li t
r , and that - 0. Thus, since the zi's are constant,I dt i=I

Hdo =d H

i dt dt (i)
dr i  jai j a i  dai

oH do n - i ri  J i  a i d i ,.0 Ft Z (rie [r [e + j e -.

n dri 2 dai
:-Z [ri - + j ri--]

do n da i

,o n 2 dZ r (12.18)
d - i "t1 2

Let the subspace spanned by w be denoted [w]. Equation (12.18) reveals a

condition necessary for motion of [w] to produce a change in 4z1W; i.e., in the

• .. .. . , - . . . - . .. , *.o o ,*
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phase of that component of w used to define 8 via the local trivialization

under discussion. First, note that (12.14) implies w may be written as

-JeW mzpe Hj8

n H je. , = £ zz ( z Pe  ).':

-z H - r2 1 ~ 1.9Jan

H 2 j

':"=Z z2 w =Z r 2 e e 8 , (12.19) •

I' H Ja a
z w r e
n n

where Z -z z 8 4 W, and a 4 4 Observe that
1 n 1 i 1

each a i equals the difference in phase between the components z iw and z Iw.ja1

(Hence, a1 is identically equal to zero and e 1.) Next, note that

(12.13) and (12.18) taken together imply

Hdw de n 2 da i,W -= W i + J Z Xl--
dt dt i rdti-2

n n da
2 d8 2 i=j Z r1  4+ Z ri ti-i dt 1-2

n 2 .de dan Z r 2d + -- ) (12.20)

i-l

where the last equality holds since a1 is constant. Equation (12.20) reveals

a condition necessary for the motion of the subspace [w] to cause the value

of to deviate from that ow dw The condition is that the rate of change

of the difference in phase between zHW and at least one of the other components
1"da

ziw, i-2,...,n, must be nonzero. That is, it is necessary that -a 0 for at

f- "... -t .. . . . . . . . . . .
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-J

least one value of i, 2 < i < n. Moreover, note that this condition is

-~l necessary no matter what choice of vectors {z ; i-2,...,n} is used to

complete the orthonormal basis in (12.14). (Recall the vector z is

determined by the local trivialization and hence is fixed.) Thus, if there
dai
i

exists any choice of {zi ; i-2,...,n} for which - 0 V i=2,...,n, it

follows that do 0 (i.e., p(t) - p([w(t)]) is a minimum energy vector)

dt 1

and the motion of [w] does not affect e. (The converse to this statement is
H do

not true, however. It may well be that, for some choice of basis, p - " 0

due to cancellations among nonzero terms on the right hand side of (12.18).) ,

Note, in particular, that if the motion of [w] produces changes only in the

relative magnitudes of the various components of w, then no effect upon e

is produced. To summarize, a necessary condition for motion of the subspace "

dli

[w] to affect the value of e is that 3i, 2 < i < n, for which -a 1 0. A
n -da2 1

sufficient condition is that the weighted sum i Z 2 ri -- #0.

The preceding remarks may also be viewed in terms of the decomposi-

tion of the tangent space into horizontal and vertical subspaces, as

2n-1discussed in Chapter 11. Consider XE T S and decompose X into its
wV H

horizontal and vertical components as in (11.4): X - + X Evaluating

tefrwH V
the form wdw on the vertical component X yields

H V H V V
w dw(Xv ) - p dp (,X ) + j de(X v )

. j de(X v ) (12.21)

. ,V
because X 0 by the characterization (11.3)' of the vertical subspace.

Furthermore, note that (11.3)' implies -
= 0 along any curve whose tangent

dt.n jcli

vector lies in the vertical subspace. Thus, since p Z z (r, it
J i-i

..4 .J

-.4
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daH n dd
follows that - 0 along such curves and that w

H dw Z r2 de j
d= t ri-i t J-

by (12.20) and the fact that w is a unit vector. Consequently, the vertical

component of a tangent vector can produce only equal changes in the phase of

each component of w.

The horizontal component of a tangent vector, on the other hand,

can never produce equal nonzero changes in the phase of each of the components

of w. This fact follows from the characterization (11.2) of the horizontal

subspace and Equation (12.20). Together, these expressions yield

w Hdw(XH) - j de(XH) + PH d(n

n 2 H
Sj d () + j r dc I -

1-2

-0 . (12.22)

Equation (12.22) shows that along a curve whose tangent vector lies in the

horizontal subspace, T = 0 unless -- 0 for at least one ci, i2,...,n.

From the definition of ai, it follows that along such a curve the phases of

each component cannot change by an equal nonzero amount. Hence, in order

that X produce a nonzero value of L, it is necessary that the subspace

spanned by w(t) change. Moreover, from (12.20), it follows that the rates

of change in phase of the components are constrained by the weighted sum

n 2d dai
Z i r2 + - 0 (12.23)

i=l

HH
1 ". z, i2,. ,n.

There are thus two mechanisms for producing changes in e,

corresponding to the decomposition of the tangent space into vertical and

%-,"
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horizontal subspaces. The change due to the vertical component X is

analogous to the change one would expect were w(t) a scalar-valued curve.

This is reasonable since curves whose tangent vectors lie in the vertical

np
subspace span a constant one-dimensional subspace of Cn. The change due to

X , on the other hand, is due solely to the fact that w(t) is a vector-

valued curve. This too is reasonable since changes in phase can be produced

in this fashion only if the subspace spanned by w(t) is not constant. Since

- the net change in 6 is due to the sum of these effects, it follows that the

discrepancy between the behavior of 6 and that of the phase of a scalar

allpass function is quantified by the term

b'., n

n6Z 2 dOrXH (12.24)de(x) - - E ri dc~i(.X )  •
1-2

An interpretation of (12.24) is that the horizontal component can cause phase

to be transferred from one component of w to another, although the net

(weighted) sum of the rates of phase change must equal zero; i.e.,

This interpretation will be applied shortly to discuss how phase lead and

lag may be transferred among the loops of a linear multivariable system.

Consider again (12.12), the differential form in (12.1) evaluated

along a curve y(t)EC. The preceding discussion may be extended to show how

this form relates a singular value to various measures of phase difference

between its associated pair of singular vectors. Let the left and right

singular vectors be written in a local trivialization as in (12.2)-(12.3).

Using the abbreviated notation defined immediately following (12.4) yields

i~OA
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v- e jev(12.26a)

u ~ e (12.26b)

6e6 -e . (12.26c)

Substituting (12.26) into (12.12) yields

+3og __ oz _____ dM u

)y dt x dt a Imv t

dv H du
-v t d t

Hdp Hdp
(12.27)

Equation (12.27) is the key to understanding the relation among a singular

value, the subspaces spanned by the associated pair of singular vectors, and

various measures of phase difference between these vectors. Thus a number of

questions originally posed in Chapter 9 may now be resolved. N~ote, in particular,

that the term Imv tu is not generally equal ta the rate of chan~ge of

the phase difference A6. Another way of viewing this is to consider an

arbitrary pair of minimum energy vectors lying above the paths through CPn

traversed by the left and right singular subspaces. Let these vectors be

* denoted by v and u ,respectively, where

v* pv eV (12.28a)

u p e u(12.28b)

and * 6 - * (12.28c)
Fv u

is the phase difference between the pair of minimum energy vectors. From

the discussion of minimum energy vectors a few paragraphs back, it follows
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that the phases of v and u are related to the sections pv and Pu via the

rules

dov H dpv

t -v d (12.29a)

and ,
dO HdQdeu H uP

J " - (12.29b)
dt udt

Hence, the difference in the phases of the minimum energy vectors is related

to the sections by

dA* H dpv H dpu
dt v t- Pu"dt (1230)

Using (12.30) in (12.27) yields

dv1 H d dA -
i- Imrv -u] + --
dt addt

= [-aloga dx + aloga + de,
-y dt + x dt dt (12.31)

Equation (12.31) shows that the term Im~v H j ul determines, not the

rate of change of phase difference between the associated pair of singular
- " ~dAO 6 i
vectors, but rather the discrepancy between - and -- , the rate of change

of phase difference between a pair of minimum energy vectors traversing the

n-1paths V(t) and H(t) throuch CP n traversed by the left and right singular

subspaces. In the scalar case the latter term is, of course, not present,

and the usual relation between gain and phase difference is obtained. In the

general multiple loop case, the relation between the measure of gain given by

a singular value and the measure of phase difference given by Ae is influenced

by the difference in the two paths 0(t) and U(t). Recall the singular subspaces

are constrained to traverse these subspaces as a consequence of the min-max

property (6.15).

- .
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It is instructive to write the local sections Pand P in coor-

dinates so that insight may be gained into how motion of the singular subspaces

affects the phase difference Ae. As in the discussion of Equations (12.14)-

(12.20), let the local trivialization used to compute phase difference be

given by e (w) = z W, where z is a constant unit vector. Hence, from

(12.26), Ae - e - e where ev e (V) = z v and e = 6z(u) = 4z u. Again,
v uv 1  1

choose constant vectors zi T, i2,...,n, so that {zi ; i=l,...,n} is an

orthonormal basis for (. Then

n H
Pv -Pz(v]) =i 1 zi(ziP) (12.32a)

z 1 ~i=1

n H
Pu PZl([U]) = zi(ziPu) (12.32b)

-i=1

where zHP and zHP are positive real numbers. Thus, writing

; Jiv A H
r.v e iv(12.33a)

and
Jaiu A H

r- e Z p (12.33b)

yields, as in (12.18)

Hdov n 2 dai
-v -- M E r - (12.34a)

vdt i2 iv dt~i=2
and

H du 2 iu'u d- I riu dt (12.34b)
i=2

*Consequently, as in (12.20),

H dv H du . dA6 H dv H du
t v--u 0  V -it u d t

.' ., , . " " - ., . . " . . . . . ..... . . .,.. .-.. . . . ." -.. .. .. .. ._. . . . . .... . .. .... . " . .- . ..
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daiv 2 Lau
+ j1,[r - r -]

dt i=2 iv dt Lu dt

a loga dx a logo L
J  y dt + ox (12.35)

Equation (12.35) reveals a necessary, but not sufficient, condition for motion F

of the singular subspaces to cause the value of dAe to deviate from that of

-aloga dx + alog 4X (in other words, to cause the relation between a and 66
@y dt ax dt

to deviate from that between scalar gain and phase). This necessary condition -
2 div 2 dLu

is that one or more of the terms [r 2 d- - r 2 -] be nonzero. For
iv dt- iu dit3

example, if motion of the singular subspaces produces only changes in the

relative magnitudes of the components of each singular vector, so that
dav dotu

= = 0, i-2,...,n, then the relation between a and A8 is not affected.

dt dt

*Furthermore, suppose the magnitudes of the ith components of the singular

vectors are the same (so that rv = riu, i=2,... ,n) and that the derivatives
dai dai.

iv =lu
of the coordinates ai and ai are the same (- -- , i=2,...,n). In this

*case also it follows that motion of the singular subspaces does not affect

'-- the relation between a and Ae. Finally, note in particular that if pv  0u
.-

p

so that the singular vectors are eigenvectors, then r r i=2,...,n and
iv r i2,...,an

_ civ =iu, i=2,...,n. It follows that,locally, the discrepancy between a and A6

and scalar gain and phase can be significant only if the singular vectors do

not well approximate eigenvectors of M(s). This observation should have some

significance for design methods based upon eigenvalues and eigenvectors of

transfer function matrices [33].

It is instructive to view the relation between changes in the

singular vectors and changes in phase difference in terms of the decomposition -

of the tangent space. Let y~t) be a curve in the complex plane, and let

a
e,.

,-'--., :- ... .: --,,,,=',, W M - - , @ "-. . . ... . ... .... *.." .. .. . ,' .*.- . . . . .." '



293

n-i°

Xv and Xu be the tangent vectors to the corresponding 
paths through IPn-1

traversed by the left and right singular vectors. Furthermore, let these

vectors be decomposed into vertical and horizontal components as

X - XV + XH andx X +  u, respectively. Evaluating the differential
v v v u u u

form (12.1) on the tangent vector to y yields the following string of

.* equalities:

a loga dx a loga IXm] H -u
Dy dt ax dt -t

"H dv H du
dt dt

P HP(T + j d6 (x)
Sv * v v

- Hdpu( ,Xu) - j d u (Xu )

H V H V
= dPv( ,XV) - Pudp (T*Xu)

+ [pH dp(itX H) + j dev(XH)]

H H -
- (Oudpu( , H + j deu(X)I

+ j dO (XV)- j d u(X) • (12.36)

Recalling the discussion of Equation (12.21), it is seen that the first two

. terms on the right-hand side of (12.36) equal zero. Moreover, recalling the

discussion of Equation (12.22), the second two terms are also seen to equal

-, zero. Thus, (12.12) reduces to

.
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alogo dx alogag IEH dM U
Sy dt ax dt' a1~ dt

H dv H du
.;. vdt udt

V

Sj[d d(XV) - dOu(Xu) • (12.37)

Equation (12.37) shows quite clearly that the form (- aloJo dx + l dy]
ay ax

fails to completely describe the behavior of the phase difference te. In

particular, this form provides no information about the effect motion of the

singular subspaces has upon phase difference. This effect is determined by

the horizontal components of the tangent vectors and is given by

'j[dev(4) - deu( )] = - [0 dpvrrX) - P dPu (r X)] • (12.38)

To summarize, the vertical components of the tangent vectors

produce changes in phase difference entirely analogous to the scalar case.

This is because these components do not affect the singular subspaces. Note

also that the effect the vertical components have upon phase difference is

completely determined by the behavior of the singular value. Hence, the

resulting change in AB does not depend upon which components of the singular

vectors are used to measure phase difference; i.e., upon the choice of local

trivialization in the discussion preceding (12.14). Another way of stating

this is that the vertical components produce equal changes in the phase

difference between any two components of the singular vectors. The horizontal

components, on the other hand, which are not present in the scalar case (or

are identically zero if the singular subspaces are constant) are responsible

for cejAe not being analytic, and thus for the failure of the scalar gain-phase

relations to describe the behavior of this function. An argument similar to

that preceding (12.25) shows that the horizontal components may be interpreted

)-i-'4
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as causing phase to be transferred among the components of the singular vectors,

subject to the constraints

dex) + pdp (l.r

=Jd () + j n r2  di-2 iv iv v

"' -0 (12.39a)

and

j de (A~ + R'dPO
u u u * u

n 2  d (XH)

.- j de(0 ) + E r~(, ) a.

U u4) i-2 iu iu u

* =0 (12.39b)

The horizontal components of the tangent vectors are thus apparently

responsible for multiple loop system phenomena having no analogue in scalar

systems.

Note that if the basis {zi } is that given by the standard basis

vectors {e i}, then the coordinates r iv and riu may be reparameterized by

-iv and u as in Chapter 10. Similarly, the coordinates aiv and aiu may

be replaced by *iv and tiu' and A6 becomes e1 " (Note, the subscript "1""

refers to the components of v and u used to define phase difference, and not

to any ordering of the singular values.)

Now recall that the standard basis vectors correspond to the

. physical loops of the system. The above discussion shows that it is
aj a

possible to interpret the failure of ae to satisfy the scalar Bode

gain-phase relations as being due to phase lead or lag being transferred

* . . ~.* - .-,- **. - *.* *
* *4 b*- - - * . . - -- * °- -
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to the first loop of the system from other loops. Moreover, transfer of phase .

lead or lag must necessarily be present if the gain-phase relations are to be

violated. The additional lead or lag produced in via loop interactions must

be accompanied by lag or lead being produced in loops of the system other than

the first. Obviously, this discussion may easily be modified to apply when

the ith components of v and u (written in the standard basis) are used to

measure the phase difference "

Note how coupling between loops manifests itself in the integral

relation (12.10). The value of 6e(jw 0 ) deviates from the value it would attain

if the singular subspaces were constant as a result of phase being transferred

among loops of the system. The net effect of this phase transfer upon Ae(Jw0 )

is obtained by averaging the value of the effect contributed, by integrating the
H v H u

function governing phase transfe; rv -- 0u-- along each ray extending

from jwo to the point at infinity.

The discussion of the preceding two paragraphs was based upon local

trivializations using constant vectors to define phase. As discussed in

earlier chapters, a more physically meaningful definition of phase utilized

the right singular vectors, which are not constant. In the examples discussed

in this thesis, this fact presents no difficulty since the right singular

"* subspaces are approximately constant and equal to the standard basis directions.

Thus the above analysis can be applied. In general, this will not be true.

Thus the above discussion needs to be extended to the general case, although

this will not be pursued in this thesis. Instead of coupling between physical

loops of the system, as in the case when the standard basis vectors are used

to define phase, coupling between input and output directions given by the

singular vectors will appear in the equations.

I " ." • . •.
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One way of transforming the differential equations involving the

phases 6i into those involving e - v is to use the functions gi as in

(11.51)-(11.52). Since the two definitions of phase difference are related

by an exact form, however, it is simpler to just use gi, given by (10.41),

directly in the integral relation (12.10). To illustrate, consider (12.10)

in coordinates for the case n-2. Using coordinates on the ith local section

(10.17) to write the ith pair of singular vectors in coordinates yields 7.

f d 'oRa (log coth }dv..: i(j% ) 0 1(°)  7T J dv 2

3',y

- -' i 2 ~ v 2(nHP sin * -- )drAdoL (12.40)
CRHP '

Using the function gi in coordinates (10.43) yields

j (T +u '--F

e (JWo) = 1(jwo) + [cos u cos 0 + sin u sin v e  u

and (12.41a)

j (Ipv - I u)  
,

9(jW) O W2(J o) + 4[cos u cos e + sin u sin v]

(12.41b)

Finally, recall that the scalar Bode gain-phase relations contained

"" a weighting function showing that the dependence of phase upon gain decreased

rapidly away from the frequency in question. Note the same weighting function

appears in the first integral in (12.10).

L :A

• o:.

.......................
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"4 It will now be shown that the second integral in (12.10) impli-

citly contains a weighting function. This follows since the element of

surface area in the right half plane is given by rdrAd. Thus the integral

may be rewritten as

1p v u H 13
(P r pH PL (PH 'Pv H u

f fC-- u(P - )drAd - (- -P -)(rdrAda).
"H vr CRH r u ar

(12.42)

Writing the integral in this way shows that the effect of the motion of the

singular subspaces at a point in the right half plane upon the value of

e(jwo) decreases as the inverse of the distance from the point to jw0o00

Thus coupling among loops is most effective in altering the value of (jw 0)

if this coupling takes place near the frequence Jwo.

12.3. Summary

In this chapter the differential equations generalizing the

Cauchy-Riemann equations have been translated into generalized gain-phase

relations via Stokes' Theorem. Some insights into implications for system

properties were discussed. Much work remains to be done; this is discussed

in the conclusion section of Chapter 13.

,y ...-.. ...-.. " -.
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CHAPTER 13

ANALYSIS OF AN EXAMPLE USING NEW INTEGRAL RELATIONS

13.1. Introduction

In Section 8.4 an example of a two-input two-output feedback system

was discussed. This example exhibited properties markedly different from

those of a scalar feedback system. In particular, it was found that the gain

- in one loop could be rolled off at 40 db/decade near crossover while the

sensitivity function remained bounded less than 10 db. In addition, a new

- tradeoff between system properties in different frequency ranges was observed.

It appeared that the anomalous behavior of this example was due to some sort

of interaction between the loops of the system, although no theoretical basis

for this hypothesis was available. The purpose of this chapter is to provide
.-

an extensive analysis of this example using the integral relation developed in

' Theorem 12.2. By identifying parameters describing the singular value

decomposition of L(s) with the individual components L (s) the notion of

helpful loop interaction will be quantified. A tentative explanation of the

behavior of this example will be presented.

• .13.2. Preliminary Analysis of Example

In this chapter the feedback system with open loop transfer function

" 103
150 x 10 .78

(s+10) .01)
L(s) 3 + (13.1)

-7071 x 10 (s+ .1) .64
-" s +L0 ( s + 0 1 )



300

will be studied. It may be verified that the feedback system with sensitivity

function S(s) - 1/(l+L(s)) is stable.

The gain in the second loop of this system (which is approximately

equal to + 21) is large until w - .01 rad/sec, and thereafter decreases
(s+ .01)

. with a two-pole roll-off (ft 40 db/decade). Note the gain in the second loop

is approximately equal to one at w - 1 rad/sec. The gain in the first loop is

large until w 1 10 rad/sec and thereafter decreases with a one-pole roll-off

( 20 db/decade). In Section 8.4 several properties of L(s) and the associated

sensitivity function were noted. These will now be examined in detail.

.- - First, denote the columns of L(s) by

L CL I LI1i 2

L 1 L12  (13.2) .i

Let the singular value decomposition of L be denoted by

L =VZUH

[Vl iv v 1 a1  01[uI : u21

FVll 12 1  0 U11  u12 '1 1 1
[l 2 u

-H
From the min-max property of singular values it follows that, at

each value of s,
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2-"

It can readily be verified that ILI(S)l > IL2(s) l for all s in the closed

right half plane (CRHP). Thus the singular values of L(s) are distinct in

the CRHP and may be numbered 1= a, 02 a. Since

Lui  a av 1  (13.5)

it follows that

1 v1  ui 1 •L1 +u 21 •L2  (13.6a)

o2v2 =u 12 •L1 +u 22 •L2  . (13.6b)

From (13.6a) it follows that

a, < julll " 1.I + 1U21 1 "IL21

< ulll I1I + IL21 (13.7)

Together (13.4a) and (13.7) imply

1 - <lu 1  (13.8)ILlI

Since IL2 (s)N < ILI(s)j in the CRHP, it follows that lunll > 0 there and,

since U is unitary, ju22 1 julll. Thus VsECRHP ui(s) may be written

using the local trivialization Ti from (10.26). (Note the correspondence

between singular values and the standard basis directions implies that

* .'.. .,.*..J...,-
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numbered subscripts in this section refer both to the ordering of the singular

values and to the standard basis vectors used to construct the trivializations.)

Next, (13.6a) yields

alv21 " lLll + U 2112 (13.9)

I Il IUllHILz1I- uU 21I'1L21  (13.10)

It may readily be verified that 11l11 > IL121, VsE CRHP, and that
I 2 1 2 1 2 >(1 - -l) > 1/2, Vsr CRHP. The latter fact implies that lul >1/2,

IL L1  11

which, since U is unitary, implies in turn that lull > lu211, VseCRHP.

It follows from these bounds and (13.10) that 1vll > 0. Hence, VsE CRHP,

v (s) may also be written using the local trivialization Ti.

The preceding remarks show that for all sC-CRHP the matrix L(s) may

be assigned the coordinates

L[a el  0 [ P (13.11)
v

2  
L 0 a2 j 1 22

or c i " o
cos~bv  -sino v e - av  1 e 0 "ia°

L (1312
,-.' sinv ej v cos Wv 0 a2 ej ;2 (13.12)

cos ue1 uHL sinb ei u cosp
U U

The properties of L(s) used to guarantee the existence of the

parameterization (13.12) may also be used to approximate the values of

:d-. .i/ ;-.- '..,..:2'..2-;< :"'.12 : .. '. -- ',2i - ,ii •,i... .' > ., . 4 1. • i.? '--"" :•.-.'?- : " .2.-.." .2.-..,i.:• -'': i-
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these parameters. In particular, such an approximation in the frequency

range over which l>>a2 will be of interest.

First, from (13.8) it follows that at frequencies for which

IL21
* u-u <<1, the angle

0 (13.13)
u

; Moreover, at such frequencies cos u l, so that (13.6a), (13.11), and

- (13.12) imply

C1 ej l V =0 1 e j 6  jcosov ]1 Lsinov ei~v

LI  (13.14)

From (13.14) it follows that

01 IL11 (13.15a)

L (13.15b)
".- ~IL2I ,

L211v arctan (13.15c)

• "' v 4 L 2 - 4 L I (13 .15d).

Together (13.13) and (13.15) show that five of the eight coordinates in

.-, (13.12) may be readily approximated in terms of the component transfer

functions of L(s). Since iu is discontinuous at $' 0, it is not possible

to approximate this parameter. This fact presents no difficulty, however,

since has little physical significance when ou 20.-

u u
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Now recall that (13.4b) shows that a2 < IL21
• It is not possible,

however, to use (13.6b) to approximate a2 as (13.6a) was used to show

aI  1,11. This follows since the first term on the right hand side of

(13.6b) is the product of a small number, lu121, and a vector of large -

magnitude. Meanwhile, the second term is the product of a number approx-

imately equal to one and a vector whose magnitude is also approximately

equal to one at frequencies of interest. Thus the left singular vector v

(corresponding to choosing the right singular vector u - [-sin u eJU TcoS uT
2 UI uo~

cannot be approximated from (13.6b). The subspace in which v2 lies may be

approximated from (13.6a) and the fact that vI and v2 are orthogonal. The

phase difference e2 still cannot be approximated, however, since the condition

H
-v v2 = 0 does not constrain this parameter.

The inability to approximate 62 is inconvenient, as it was shown in

Section 8.4 that feedback properties depend critically on its value. Moreover,

this parameter behaves in unusual ways which are related to the anomalous

properties of the sensitivity function of this system. Thus it would be

very desirable to be able to predict, a priori, what the value of 6 would
2

be. This, of course, could be of potential use in design.

First, note that Equations (13.13) and (13.15) may be used to

determine how changes in the functions L. (s) affect the various parameters.
1J

Recall that the Bode gain-phase relations for scalar feedback systems show that

increasing the gain over a frequency interval necessarily causes positive

phase lead, (e.g., see the Bode plot of a phase lead filter as in [57, p. 297]).

Equations (13.15a) and (13.15b) show that the gain in the first loop of the

system (hence a1 [L]) may be increased without causing 91 to change. This may

-"p ' , . . . " . ~ . ',' . ', , .. - , . - .. . . , : r . . . - ' . . . " - - . . , - , ' . - , , - - : _ : : - . .2
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be done simply by increasing IL21 (jw)I over an interval while leaving

ILll(jw)I constant. From (13.15c) it follows that v will increase.11 v1

Moreover, since increasing IL21 (jw)I causes 4 L21 (jw) to increase while

holding jLI 1 (jw)I constant leaves 4 L11 (jw) unchanged, the difference

in phase between L2 1 (jw) and L1 1 (jw) will increase. By (13.15d) it

follows that ipv will increase. Thus an increase in the gain a1 is

accompanied by phase lead, but not necessarily in all components of the

output. As just shown, it is possible to increase the gain in one loop

of the system by increasing only the magnitude of that component of the output

being fed into the other loop. Thus phase lead is produced, but only in one

component of the output. The value of phase in the other component is

unaffected. IL21I
Now increasing the ratio L which causes 0v to increase, also

affects the direction of outputs due to inputs in the direction of the

singular vector u2. This follows since

Lu 2  a2 e j 62 [-si v ](13.16)

Increasing v thus leaves the value of the gain a2 unchanged; however, the

magnitude of that component of the output fed into the first loop of the

system increases while that of the other component-decreases. In addition,

the phase of the first component lags that of the second by an amount D-v .-

The preceding discussion showed that the lead filter present in

L21 (s) can be associated with various changes in the parameters of (13.12).

What effect, if any, this has on 8 is still unclear, since an approximation

ei2
to ~2 cannot be obtained. If a 2  were analytic, however, this problem

2 2 --



306

would not exist. The Bode gain-phase relations would show that 82 would

approach -90N ° , where 20N~db/decade is the rate at which a2 rolls'off.

The claims of the preceding discussion may be substantiated in the

present example by examining plots of the various parameters. For each

reference, Figures 8.1-8.7 are reproduced as Figures 13.1-13.7. Figures

13.8.a-13.1l.b are Bode plots of Lll(s), L12 (s), L21 (s) and L2(s),

respectively. Figure 13.1 shows how the singular values of L may indeed be

identified with the gain in the two physical loops of the system, (i.e., the

magnitudes of the columns of L). Figure 13.5 shows that the right singular

subspaces do indeed become aligned with the standard basis directions (which

in turn correspond to the physical loops). Note the correlation between the

plot of a2 and the Bode plots of LI2 and L in Figures 13.9 and 13.11.

Similarly, note the relation between 01 and the functions L11 (s) and L21 (s), as

shown by Figures 13.8 and 13.10. Note, in particular, the peak in a. 'Figure

13.1) due to the peak in L21. As the approximations discussed earlier show,

this means of obtaining a peak in 01 should leave the phase difference the same

as if 1 actually equalled XL . That this is indeed the case may be verified

from Figures 13.7 and 13.8. Moreover, Figure 13.6 shows there is a peak in v

due to the peak in IL 2 1 /ILllj. The associated phase lead in Wv may also be

seen.

Finally, the phase difference 92, which could not be approximated, is

plotted along with 1 in Figure 13.7. It may be seen that e2 increases, or

experiences phase lead, near the frequency range over which v is increasing.~v

This would suggest that the phase lead in L21, which produces phase lead in

also affects e,. In Section 13.3 this effect will be analyzed quantitatively

using the generalization of the Bode gain-phase relations presented in

Chapter 12.
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Finally, recall that the analysis of Chapter 8 showed that

the angle between singular subspaces and the phase differences ei = ui vi

are important in determining feedback properties. For the example

being analyzed, it was pointed out in Section 8.4 that e2 a and , v so

that the latter parameters may be used reliably in their place. This may

also be seen using the local trivializations. From

H H ej82
u2 2  

0u2  v2

it follows that

.cos u u -v
2 2

Isino u sinov eJ(Wv-'u) + cos u cosov1 (13.17)

Similarly, 62 and e2 are related by the function (10.41):

02 2 +49

= 02 + 4tcos u cos v e-(v-u) + sin u sin %,]. (13.18)

Now, since u 0, it follows from (13.17) and (13.18) that and
u2 2

02 2'

13.3. Analysis Using New Gain-Phase Relations

In the preceding section approximations to some parameters describing

the singular value decomposition of L(s) were described. These approximations

were based upon the algebraic relation between the various parameters and the

F"" * " :2" . .. .t. .I . " .. ' -
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components Li(s). Algebraic relations are based upon equations which must be

satisfied at each value of frequency. Analytic relations, such as the classical

Bode relations, relate the value of a parameter at one frequency to values of

other parameters over the entire range of frequencies. For example, this

accounts for the fact that the phase lead in the L21 element is necessarily

accompanied by an increase in the gain of that element.

Recall that an algebraic approximation could not be obtained for

e" In this section, the integral relations from Chapter 12 will be used to

show that the value of 62 (jw) is completely determined by the singular value

a2 and by the left and right singular subspaces. Since these latter quantities
2o

can be approximated algebraically, in principal it should be possible to

estimate 6 via its analytic dependence upon 02 and the subspaces. Rules of
22

thumb based upon the new integral relations are not yet available; thus it is

not possible at the present time to estimate i2 directly without numerically

evaluating a surface integral. It is possible, however, to obtain an indirect

estimate. In addition, some qualitative insights into the system behavior

, needed to produce the observed phase lead in e are obtained.
2

In order to apply Theorem 12.2 certain conditions must be satisfied.

The matrix L(s) obviously has no poles in the CRHP; it may easily be verified

that det[L(s)] is nonzero there also. It was shown in Section 13.2 that the

singular values of L(s) are distinct and that each. pair of singular vectors

ui, vi may be written using the local trivialization Ti. In addition, the

constants ki are given by k 1, k- 2 and the singular vectors may be chosen

so that ul - el , u2 e2, V1 l- el and v2- 2 e2. Thus all conditions
s

%
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necessary to apply Theorem 12.2 are satisfied. The phase differences i

must therefore satisfy (noting 6 (0) = 0)

8 1D doga ii 0 'i f {log coth L}dv

H do i  i H i
'+1( v H F u r -)drAda (13.19)' CRHP i r- i.'

using a polar coordinate system defined by s - jw0 + rev'. In coordinates on

1
CPl, (13.19) reduces to

dlogo i
i o f {log coth LL}dv

(-i) f (sin - sin 2 -)drAdt (13.20)
It CRHP v3r U 3r

The first integral in (13.19)-(13.20) is similar to the scalar

Bode gain-phase relation. Associated with this integral is the rule of

thumb that a 20N db/decade roll-off rate produces a 90N* phase lag. The

second term in (13.19)-(13.20) quantifies the amount by which motion of the

singular subspaces causes the gain-phase relations to be violated. In this

example it is clear that the violation of the gain-phase relations is due .'-,

to interactions between the physical loops of the system. To see this, recall

the fact that (t 0 implied tO~t the right singular subspaces were aligned

with the standard input directions. Thus any contribution from the surface

integral must arise from the left singular subspaces changing with frequency.

This manifests itself in changing loop interactions due to changes in the

-* way outputs from the high and low gain subsystems are fed back to the input.

Note from (13.20) that the values of el(jl) and 82 (jl) should
1 21

deviate from those expected from the SISO gain-phase relations by amounts

W-

.,.. ... .. ,. . .,.-. .. .. .. ,. ,... ... ,. , ... . .. ... . .".;';,'e : ',.. . . .... .,.. .-. .,.'. .,-.. . .',-.. .,..".. . . . . . .". .".. . . .-.. . . . -. . ,
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of equal magnitude and opposite sign. Thus an alternative to computing the

surface integral directly would be to estimate its value by comparing the

value of 6l(jl) with that of the phase of a transfer function F(s) which

satisfies IF(JW)I -a1 (jw). Since ol(jw)fILI(j)I, F(s) will be constructed

so that IF(Jw)I - ILIOwl). Using spectral factorization techniques, it may

be shown that

2
F(s) - (150 x 10 )(s + 2)(s + 49) (13.21)

(s + 10)

is a suitable function. Inspection of the numerical values of al(jw) and

IF(jw)l shows that the two functions are very nearly equal. The Bode plot

of F(s) is shown in Figure 13.12. As expected from classical techniques,

the peak in IF(jw)I near w 1 10 rad/sec is accompanied by phase lead at

lower frequencies. At w 1 1 rad/sec,4 F(jl) 1 10.60. But 6 (jl)-- 5.7 ° .

Thus the surface integral must contribute - 16.30 phase lag, and the

value of i2 l) should be larger than that predicted by the roll off rate

of o2 (jw) near w = 1 rad/sec by 16.3*. From Figure 13.1 it appears that

a2 has approximately a 40 db/decade roll off for well over a decade on

either side of w I rad/sec. Closer inspection (Figure 13.13) reveals that

a more accurate estimate would be 38 db/decade, while the numerical values

of a2 indicate that very near w 1 rad/sec, a2 rolls off at 37 db/decade.

Thus if the surface integral was not present ;2(Jl
") would be roughly -165*

.* to -172 ° . The loop interaction term shows that e2 (jl) should lie roughly

in the interval -150 ° to -156. This agrees well with the actual value of

6 82 (jl) -_1540.
2..
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The integral relations may also be used to gain qualitative

information about the properties of the system if loop coupling is to

produce phase lead in " First, the value of the integrand averaged over
2'

the right half plane must be negative. Since u 0 due to the structure of
" ~v"
the example, it follows that - - must take negative values over at least a

portion of the right half plane. Moreover, 0v must be sufficiently greater

than zero in this region if the negative values of - are to have an

appreciable effect. Finally, since the surface integral essentially weights

the integrand by a factor of (l/r), it follows that 0v and v must attain

the appropriate values in the vicinity of s- jl. Since the values of both

and v are determined by L2 1 (s), it follows that the coupling introduced

by this element is critical to producing the desired phase lead. Thus a large

value of 0 v seems necessary to achieve the phase lead resulting in the first

peak in the sensitivity function being only 8 db. Recall also the large

value of 0v results in the second peak in sensitivity being as large as 8 db.

Thus it is reasonable to conjecture that the tradeoff between the levels of

* these two peaks cannot be avoided within the basic structure of this problem.

Finally, recall the discussion in Chapter 12 concerning the two

mechanisms by which changes in the phase difference parameter 62 may be

produced. Clearly both are demonstrated in this example. At low and high

*frequencies the change in 6 is dominated by the first mechanism; i.e., the

fact that a2 (jw) is rolling off. In the mid-frequency range, however, the

second mechanism has a significant effect. Recall this mechanism was due to

a transfer of phase between the loops of the system. This transfer is

". -' -.. ' • . - - - ' ,*-. ,2 1 ' , ..- - *',- . : .,. i , . . .. , . - . .. -
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clearly demonstrated in this example, since the phase lead in L21 (s) does

not produce phase lead in 8 but rather in 8 The interaction between
1 2

loops is present in the form of a significantly large value of 4v. Moreover,

the fact that the change in phase is not equal in all components of the left

singular vectors (choosing the right singular vectors as u, W ei) is

demonstrated by the significant change in v over the frequency interval in

which e2 experiences phase lead, while 81 does not. Clearly, the effect in

the phase difference parameters ei is contrary to what one would expect were each

a e a rational transfer function.

13.4. Conclusions

In this chapter the integral relations derived in Chapter 12 have

been used to analyze the exa""ple in Section 8.4. The same type of analysis

could be performed on the realistic example of Section 8.5, although the

nature of the loop coupling in the latter example does not produce any phase

lead in 2 Even in the example considered, more work remains to be done.2',
The parameters of the lead filter in L21 (s) need to be varied in order

to gain an understanding of their relation with s and V. Especially

needed is some knowledge of how these parameters are affected at points

in the open right half plane.

Another task remaining is to numerically evaluate the

surface integral. By evaluating the integral in steps some insight would be

gained into how fast the weighting function decays the effect of the

integrand.
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The effect of singularities also needs to be studied. Recall

Theorem 12.2 is applicable only to those matrices with distinct singular

values in the right half plane. Yet, by reducing the gain in the first loop

by a constant, a system with the same phase lead in e2 may be obtained and

for which the singular values cross over. This suggests the assumption of

distinct singular values might be removed.

Another observation was that changing the sign of L21 (s) did not

affect the values of 2(jW), or °-- Yet the phase leading effect was
2 v' -ar

no longer present. Further inspection revealed that a2(s) was zero at two

points in the open right half plane. Thus the new integral relations, as

expected, exhibit the effects of nonminimum phase plants. One difference,

however, is that the integral relation for 01 e is still valid; only

that for a2 ej 62 is affected.

Finally, the ability to independently manipulate 0v' qv, u and

is also constrained by a set of differential equations. These were not

stated in Chapter 11, but a procedure with which to derive them was presented

in Section 11.3. Further study into these equations is also needed.

L

7-
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CHAPTER 14

SUMMARY AND CONCLUSIONS

For a summary of the results of this thesis, the reader is

referred to Chapter 1 and to the concluding sections of each chapter.

- This thesis comprises an incomplete attempt to generalize some

ideas from classical control theory to multiple-loop feedback systems.

Significant aspects of the classical theory were the quantifications of

various algebraic and analytic tradeoffs among feedback properties.

Investigating how these tradeoffs extend was a major task of this thesis.

As even the most casual reader must have recognized, much substantial work

remains to be done. Specific areas needing further research could be discussed

here, but Bode's invincible fatigue is beginning to set in. Suffice it to

" say that the essential tools - the approximation techniques from Chapter 8

and the mathematical theory from Chapters 9-12 - appear to be at hand.

*

Although hopefully not insignificant

"-. %:A
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APPENDIX A

PROOFS OF THEOREMS IN CHAPTER 3

The following lemma follows from a minor modification of the well-

.. known Poisson Integral Formulas [26,27] for the recovery of a function

analytic in the right half plane from its values on the imaginary axis.

The proof found in [26] is modified to show that singularities of log f(s)

at jw-axis zeros of f(s) do not contribute to the values of the integrals.

As the required modification is slight, the proof will only be sketched.

Lemma A.l: Let f(s) be analytic and nonzero in the closed right half plane
id

except for possible zeros on the imaginary axis. Assume that log f(s)
ds'

is in class R, i=0,1,....

xThen at each point s x +jyo' x > 0 it follows that

00 x
logf(s ) I f logjf(jW)o d (A.1)

(s0 f~ dw (A.2), -
•~~c x +f ) Xo+yoW)2-'

0 0i

00 x

- log f(s) T 1 j -- log f(s) 2 dw. (A.3)
ds s -0 ds x0+(yo-w)

5

"' " Proof: Define the contour C5 to be the imaginary axis traversed from +jx ...

to -j- with semicircular ind-ntations of radius 6 into the right half plane

at the jw-axis zeros of f(s). Then f(s) is analytic and nonzero to the right

of C6. It follows that log f(s) and its derivatives are analytic in this

region also.

. *. .

* .. * .
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The proof of the Poisson Integral Formulas in [26] may be followed to show

that for each point s in the open right half plane there exists 6

sufficiently small so that

x
log f(so) = f log f(4)) d . (A.4)

A straightforward calculation shows that in the limit as 6- 0 the integrals

taken around the semicircular indentations vanish. Thus, setting -jw

in (A.4) yields

Xo

log1f(s ) f log f(jW) dw (A.5)027r 2 .
o 0 +(y o- )

Similarly,

log f(s) = d log f (s) 2 w(A.6)
dsiS - ds IX+(y-W)

s s-jw
0

where the improper integrals are defined using Cauchy principal values

[26, pp. 203-204]. The result follows by taking real and imaginary

parts of (A.5).

Proof of Theorem 3.1: Follows from Lemma A.1 by setting f(s)= S(s) and

noting 9(z) 1 (z).
p

Proof of Theorem 3.2: Follows from Lemma A.1 by setting f(s) =T(s) and

noting T(p)= B(p)er T
z -

It should be pointed out that formulas relating logff(s0 )1 to a

weighted integral of 4f(jw) and 4f(s ) to a weighted integral of loglf(jw)l may

also be obtained. These follow from the conjugate Poisson Integral Formulas

"1 [26, pp. 225-226] and may also have implications for feedback design. However,

such implications will not be pursued further at this time.

?:-1
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Theorem 3.3 could be verified directly using contour integration

in the right half plane with branch cuts extending from the zeros of S(s)

• "to infinity deleted. Care must be taken to deal correctly with the fact

p that 7S(s) jumps by a multiple of 2w across these cuts. (This led to the

incorrect result in [9]). An alternative procedure is to prove Theorem 3.3

* as a limiting case of the integral relation (A.1).

_ Proof of Theorem 3.3: Evaluating (A.1) for f(s)-S(s) and s-x>0 yields

(noting conjugate symmetry of S(jw) implies S(jw) =S(-Ju))"

loJ9x) -- loglscjw)l x4 dw (A. 7)
. 0 x +W

2 '

Observing that logIS(j){ 2 converges to logjS(jw)j pointwise as x
x2+w

approaches infinity suggests that

2 2
lim x logl(x) l lim 2f logIS(jw)l 2 dw (A.8)

- x-+0 x + 0 x +w

might be used to evaluate

flogIs(jw) Idw (A.9)

0

j.

L:

............................................
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The proof of this conjecture consists of three parts. First,

•~ ]it is shown that (A.9) may be approximated arbitrarily closely by

- f logIS(Jw)ldw for M sufficiently large. Next, it is shown that for>' 0 n2

wE [0,] the sequence 22 converges uniformly to 1 as n approaches-_ n2+w2  .

infinity. Together these facts show that the limit on the right-hand side

of (A.8) is finite and equal to (A.9). Finally, the limit on the left-

hand side of (A.8) is evaluated.

The power series expansion of log S(s)=-log[l+L(s)] for

IL(s)! <1 is given by [58, p. 158]

log S(s)=-L(s) + + higher order terms.

Thus, by (3.22) W loglS(jw)I approaches zero at infinity. This implies

that there exist a frequency w and positive constants M and 6 such
M-- gS~ l 0 or w> . For M> w,

that log+s(jw)Io
W

00C M M
' a

f ilogJS(Jw) IIdw < f 0 dw = _ (A.10)

From (A.10) it follows that for any E> 0 there exists a frequency M such

that

"-'. f log I S(jw)lIdw < E (A.1ii)

2n2
On the interval w( [O,] it is easy to verify that the sequence 2-2

nl +w
converges uniformly to one as n approaches infinity. If L(s) has no

jw-axis poles, then uniform convergence of the integrand suffices to

show that [48, p. 711

%-4
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lif logISjW) I - -d- f 1ogIS(jw)ldw (A.12)
2+ 2X 0xO 0

(If L(s) has poles in [0,Z], then it is necessary to consider indentations

" into the right half plane as in the proof of the Lemma; these details are

omitted.)

Together (A.11) and (A.12) imply that

2 2

F i foSj) --~ d,,, l j lofslsw)ldw . (A.13)

X 0x +w 0

It remains to evaluate lim x logIS(x)l. By definition

-. .- -I

Iogl+iV)l loglj'¢,)l + -o$lS(:l

p
E: log[j + log[S(x)I (A.14)

Since liz x logIS(,)l . 0, it follow that

N

.m x .ogli(x)l - Z p li x log -. (A.15)
i-i Pi-x

From the power series expansions [58, P. 1581

log~. "o| 2,.og:, + ..) - .2.- . (..)2 + *.,. 1 .
p '

o18(1 ) 2 +E- 2 .. .X x 2 x1 "

i: follows that for x I I .,1

4..

- a. t~p.. aL tk * . -*. ** * ~ . -,
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+- +S -- og-- lo g

- higher order terms.

Thus,

ulm x log - 2 Ra[pil (A.16)
pi-x

Substituting (A.16) into (A.15) yields

- p
:-. x loglS(x)l - r Re[p] (A.17)
VOW" iml

Substituting (A.17) into (A.8) and using (A.13) yields

N
.. Z Re (pi] l fog S(jw) d •

i-i 0

Proof of Corollary: At each frequency w > w

ls(jw) 1 0' 1- L(jw)j

This follows since IL(jw)I < 1 for w > w by (3.24). Moreover, since

IL(jw)I c < i for w > w

IS(ii)I M
•w: -", --- 1 -,i

Expanding log :Ln a power series yields (for w >
"' l~k/

I~k)

-... -
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" .I l~I - -

- ~ k(=+kal+k
n1- w -I

The infinite sum attains its maximum for w = t . Define
c

!1:l ) 1+k 11I

0 / U o c k.. -I$ c+k

Thus, w > wi implies thatc

M0
loglS(j w)l ! 1 k

g Thus,

flogISIdw'<c f -4 dw

C .

+k
k

* ~Substituting M0  4

14k
M0 c

k k

Since l e, this reduces to
14k

*log Ti-It we1
£log;IS(jwfldw <c

C 
6

. . . ..
....

--. %
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APPENDIX B

PROPERTIES OF THE SINGULAR VALUE DECOMPOSITION

The purpose of this Appendix is to state some properties of the

singular value decomposition which are used in this thesis. The exposition

is based upon that of Stewart (37, Section 6.6]; the reader is referred to

this source for proofs and further details.

nxn
Let A C n . Then there exist unitary matrices U and V such that

vAIJ -Z(B.1)

where E diag[a1,a2,... a n and a 1 a2 a > 0. The numbers ai are

referred to as the singular values of A. The columns of U = (u I ... 1
1 jin

and V - v1  ... vn] are referred to as the right and left singular vectors, .

respectively. The singular values and vectors must satisfy the equations

Au= ai vi (B.2)

H Hvi A ui ai (B.3)

2 H
Moreover, the numbers a are the eigenvalues of the matrix A A. The right

singular vectors are eigenvectors of this matrix. Thus, _-

H 2
AA U (B.4)

In addition, the numbers ai are the eigenvalues of" the matrix AA . The left

singular vectors are eigenvectors of this matrix. Thus,

AAHV - Vy2 (B.5)
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The singular values of A are uniquely defined. The singular vectors,

however, are not. If A HA han an eigenvalue a2 with multiplicity k, then the

corresponding columns of U may be chosen as any orthonormal basis for the

H 2 2
eigenspace of A A corresponding to a. If a > 0 then, once the right singular

vectors are chosen in this fashion, the left singular vectors are uniquely

determined from (B.2). (Similar arguments starting with the left singular

vectors can, of course, be made using (B.5) and (B.3).)

Note, in particular, that there exists a degree of freedom in

choosing even a right singular vector corresponding to a singular value, ai ,

of multiplicity one. Let ui be a right singular vector corresponding to ai ,

and let vi be the corresponding left singular vector. Then, from (B.2), it

jaIlfollows that choosing ui " e ui , aGJR, as a new right singular vector yieldsaj
vi e' vi as the corresponding new left singular vector. Analogous

statements hold for singular values of multiplicity greater than one.
- A A

Let a O , the largest singular value, and let a = an, the smallest

Pa singular value. Then,

CF JAl (B. 6)

where I'12 denotes the matrix norm induced by the standard Euclidean vector
1.12

norm. Assume detA#O0, so that A exists. Then,

-A 1 (B.7)

A 12

The Frobenius norm of a matrix is defined as

IAIF /Z 7 aij2 (B.8)
i,j
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The singular values satisfy

IA~/Z (B.9)• F =

The singular values of A are related to the eigenvalues of A by

a 1x~i V . (B.10)

Moreover, if A is normal (e.g., if A is Hermitian or unitary), then the

eigenvalues of A may be ordered so that ai

Since the singular values of A are the nonnegative square roots of

a Hermitian matrix, they inherit many of the interesting properties of such

matrices. Among these are the following min-max property:

JA2
i  min max dim$ n-i+l . (B.11)

$i ue$ li 2

The minimum in (B.9) is taken over all subspaces of Cn with the appropriate

dimension. In particular,

[A] max (B.12)
u Cn 1u12

jujO

a[A] > -'2 Vue Cn (B.13)

In addition,

a[A] min n (B.14)

jujO
jAu 2 n

S[AI < r - VuEC (B.15) -

- 2.
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Finally, one other property which singular values share with

eigenvalues of Hermitian matrices is that they are numerically well-conditioned.

In fact, given A, AA n n , then

O[A+AA] > a[A] -[AA]

Thus, if a[AA] < a(A] and A is nonsingular, then A + AA is also nonsingular.

F In fact, given A nonsingular, the matrix AA of smallest magnitude for which

A + .A is singular has magnitude a[AA] - _[A]. One such matrix is given by

AA - a v u where a, v, and u are the smallest singular values and

corresponding singular vectors of A.

V.,

F~~. .- ' . -.-..-... . ... ,: .. .- ." : . : . - - . .- : . - ... - . -,
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APPENDIX C

PROOFS OF THEOREMS IN CHAPTER 5

Proof of Theorem 5.1: Note the sensit- qity matrix S(s) - [I + L(s)]

has no poles in the closed right half plane by assumption of closed loop

stability. The function det S(s) thus has no poles in the closed

right half plane but has zeros at the open right half plane poles

{pi ; i=l,...,N p of L(s). It is necessary to remove these zeros.

Define

D(s) B-l(s) det S(s) (C.1)
p

where B p(s) is the Blaschke product

N
p pi-s

B p(s) i1lPi + s (C.2) -
i-l

Then D(s) has no zeros in the open right half plane, log D(s) is analytic

there, and logID(s)j = logIdet S(s)j. A little analysis reveals that

log det S(s) - - log det (I + L(s)]
(C.3)

= - log [1 + Z(products of Lij(s))]

The fact that (5.24) is satisfied implies that the Z(.) term on the right-

hand side of (C.3) goes to zero as w-o. In particular, there exists a

frequency w1 such that IZ(.)I <1 for w> wi At these frequencies (C.3)

has the power series expansion

log det S(s) = - .() + 2 + higher order terms. (C.4) -
2
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5 Thus, wlogjdet S(jw)j also approaches zero as w-*®. At this point the

proof of Theorem 3.3 may be followed to yield the result. -

Proof of Corollary 5.2: Follows from the fact that

* n
Idet S(s)I 11 oi[S(Jw)] .

i-l

Note that a result similar to the Corollary in Chapter 3, Section 3.3 is

available in the MIMO use. Suppose the design constraint

Ma[L(jw)] < 1+ k W >< 1, C > 5)

W M

is imposed, where k> 0 and k =  Then, straightforward manipulations

yield, for all w>c; c

[S(jw)] = a[I+L(J)]

< (C.6)
- -YtL(Jw)I

[S(j)] < 1 M
1--l+k

The proof of the Corollary in Appendix A can be followed to yield

* 100 log[- ]Wc
f log a (SOW~)] < (C.7)

i k

CL

3
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APPENDIX D

CANONICAL ANGLES BETWEEN SUBSPACES

First, some facts about the angles between singular subspaces are

stated and used to prove some identities involving the matrices U 'V

Denote the column spaces of U and Vi by U and Vi, respectively. Then,

nfrom (8.1), U1 and 1 are k-dimensional subspaces of C . From [36 and 59l

Theorem 2.3] it follows that there exist unitary matrices

S[U I I U2I and V = [V 1  v2 ]

such that the columns of Ui and Vi span U . and Vi l respectively, and so that

(assuming 2k < n):
k..

-2o 2

, (D.l)
U -

C' S 0L = - I -

-S C 0

0 0 1
n-2k-

(If 2k> n, then the identity block appears in the upper left hand corner.)

The matrices C diag[cosa i] and S diag[sinai], i=l,...,k, contain the

. cosines and sines of the canonical angles between the subspaces UI and 1I

* The canonical angles between subspaces are characterized as follows.

P "1
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Definition D.l: [36] Let U and V be subspaces of Cn with

d dim U > d V dim V > 1 (D.2)

The canonical angles m [0,7/2] between U and V are defined for m=l,.... Id

by

H H
cos% = max max luv I =u v (D.3)

m uEU vE m m-

with Jul 2 = i 1lv 2 1 and subject to the constraints

IL .i

u =0, v0V. V 0 il,...,m-
i i[

_ 7
The vectors ur and vm, m'l,... ,q are called the canonical vectors of the

pair of subspaces.

Remarks:

(1) The canonical angles are uniquely defined; the canonical I
vectors, however, in general, are not. .IM

(2) With the above numbering, i is the largest canonical angle

Hand is computed from cos I = max max u v , with
uEU uEI3

-u1 2  112 .

(3) The vectors {vi; ifl,...,dV} form an orthonormal basis for

Q. The vectors {ui; i=l,...,d V } may be augmented with

- dV vectors so that the expanded set {ui; ifl,...,d U}
U]

forms an orthonormal basis for U. In [36] it is claimed

S that the condition

u v , i ; i=l,. . .,d J-1,.. .,d (D.4)

holds. ,

or. .-- .
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Note that k of the canonical angles between the subspaces U 2 and '3 2

are the same as those between U 1and V1V In addition there are guaranteed

to exist n-2k angles equal to zero. This follows since the assumption 2k < n

implies that the dimension of H2 r3 2 is at least n-2k.

Since the columns of U and U both span UH, there exist unitary

matrices P. such that

[U1  U2 ] tP 02  [ e~ o Ck (D.5)

0pH r= GC(n-k) x(n-k)
p21  2

Similarly there exist Q duch that

[V1  Q2 =~ 02 QQ o QECk (D.6)
V HV

L0 Q2J Q C: (n-k) x(n-k)

Equations (D.1). (D.5) and (D.6) may be used to obtain expressions

for the singular value decompositions of the matrices Ui V.. Simple

calculations yield

HV HH
U PiS

The~~~~ sigua vau deopsto 2SD o V i h ij)t lc f(.
(D.7

P HP 9 1

- - - - - - - - - - - - - - - - - - - - - - - -

* - I
1  

~ j - * --

% H *. I*~..- 1* I ~ I- -
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The SVD's of U iHVj can be used to derive, through straightforward

manipulations, the following identities:

1)U-1 (U1  (v1 U2) (v2 u2 )

IV)(UIHVl -1 HI.2-1 H (D9)
(U' HVV ( (D.V)2 11 2 u 2  ( 2  1 )

(U2 HV2 ) + (U2 HV1 )(V 1 HU2 )(V 2 HU2 ) l (V 2 U2) . (D.10)

Finally, it is easy to verify that the singular values of the matrix

products on either side of (D.8) and (D.9) are equal to the tangents of the

canonical angles.

Lemma D.l: Assume that det[U u2V2 2 0. Then

I U (V H 2) -1 - V (U HV1) -l H (D.11)

Proof: Note the fact that det[U2 V2] # 0 implies that det[UiHVl] # 0.

Now

I - ( )vH [VVH HU- H

222 2 2 [V V 2 22) (V2-( 2V V2

, V VI(V 2HU2) (v 2u -v 2  .,

1 1 1 2'2 2 2

Using (D.8) yields

H -l H H -l 1HV HI- U (V2 U2 ) V2  1 VV1 + V (U1HV 1) (U1V2 )V2
11 1 1V 11221 V

"V (U (U ) +-U)VIH ) VH

-V(UHV -U H1 V U1 1)  ' --',

1 -

................................................
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APPENDIX E

PROOFS OF THEOREMS IN CHAPTER 8

Proof of Lem-a 8.2: Condition (8.13) implies that [U1 1 E] 1 which,1 -l
from (8.7a), implies that A7I exists and

A1  (I -•A -  (I + )-1l 1E"1

(E.1)

1 E(u HV -Il

1 1 1

Using this approximation in (8.7b-d) yields

B l (u U z (E.2)

C I 1 + [U2 HV2 - U2 HV(U 1HV l)-u 2I z2  (E.3)

D u2 HV (uIHVl)-l (E.4)

Using (D.1O) in (E.3) yields

c - (V2 U2) (V2 Hu + . (E.5)

Using the above approximations to (A)-(D) in (8.6) yields (8.14):

S 1 z [I(U KV I)-1[1 + U1 HV2 z2 (V2HU2 + E2)- (v 2Hu2 )(U2 HV1 (UIHV 1
) - I  (E.6)

Using (D.9) in (E.6) yields (8.14a)

Zs12  •(u'V)1UHV H + z H(E.7)
12 1 1 1 1 2 2(V2 U2  2~ 2 2

2 -(V 2 u2  
+U Z2 )-I(V2 HU2 )(u 2 HV1 )(U 1 HV 1 )- (E.8) -

222I
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Using (D.9) in (E.8) yields (8.14c)

$2 2  (v 2Hu 2 + E)-(v2u) V

Proof of Theorem 8.3: Approximation (8.15a) follows from (8.14) by requiring

that

2_(Z]> 1 {(U1 H 1 )-I[I - (U1HV2 )z 2 (V2HU2 + E 2)-l (v2HU1)] (E.9)

and (HV -1 (uH2 HU 2 -1 HU (E2."0)

so that SII 0 and S12 0. Using the resulting approximations to S and

transforming into standard coordinates yields (8.15b)

H~(1 U -1 H H H ( 1 U 1 H2 ( H H
S U2 2 2 + z2 )- (V2 U1 )U1 - + U22(V2 2 + £21-l(v2U2)U2

th i tt uH + H

Using the identity U U + 2 2  = I yields (8.15a) and the identity
VH V2 H

p 1v1 + v2v2  - I yields (8.15c).

Approximation (8.16a) follows from

ap - U2 (V2 J2 + E2 ) H

Note that

V2 U2 (V2 HU E2- + 2 (V2 HU  +2-1 (E )

(V HU + z )+ (V H r (V HU + E ) H -)
2 2 2 22 2 2 2 2  2

T I 2 (VH U2) lv 2 H + U2 (V2HU2)-lE2 (V2 HU2 + z -Lv H
tapp 2 222 2

VV
-.

1|
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Using Lemma D-1

Tap - V(U HV )flU H + U (V H U )- 1 E(VH + E )- -iH

which is the desired result.

To obtain (8.16b) note

T ap= V 1(U 1 HV 1)l [(Ul HVI V1 H + (U
1 V 2 )v 2 H

+[v1 v1 HU ) + V(v~u (V HUHU) l1 (HU -1 H

H VZ(V HU -1)
app 1 1 2 22 2 2) 2 (E.12)

+ V 1(U H )-l(U HV + (V HU ''v HU )2l E v (VHU + -lvH

Using (E.1l) in (E.12) yields

H HUH-1 H
app 1 1 2 2 2 2 2 2

+ V [((U H 1 )-l U1( H V ) + (Vi HU 2)(V2 HU 2) - (V 1 HU 2) (E.13)

*(HU + -l H(2 2 + E2) IV 2

Using (D.8) in (E.13) yields the result. Expression (8.16c) is obtained

similarly. a

Proof of Theorem 8.1: First note that (8.9) implies (V HU + -lj 1 (V HU);l.2 2 2 2 2

Using this approximation in (8.15a) yields (8.10a). Expressions (8.10b) and

(8.10c) follow easily. Using (D.11) in (8.10a) yields (8.11a) from which

(8.11b) and (8.11c) follow easily.



Proof of Lemma 8.4: It may easily be verified that an alternate expression

for Sis given by (assuming E-1 and G1exist):

- E' +F~lH](E.14)

where

E +UHV (E.15a)
2 22

(I + U2 V 2 E2) (u2HV1 E1) CE. 15b)

G~IUv (U HV E)(I + U1  E) (U ~E (.5
1 1 1 1 2 2 2 2 2 2 1l 1E1c

-(U HV r )(I + U HV E )lE. 15d)

Condition (8.19) implies that-(I + U2
1  z ) exists and
21'22

E I (E.16a)

F U 2 HV 1 z1  (E. 16b)

HHU V HVI (E.16c)

HVSU1 2 E2 E1d

The approximations (E.16) imply that (8.20) holds.

K:Proof of Theorem 8.5: From (8.20) it follows that if at 2] is sufficiently

small, then the appropriate inverses exist and

(Il + U11  1 -E (E.17a)

12 0 (E. 17b)



354

(U HV1 E)(I + U H~V1 ) E (E. 17c)

S2 2  I (E.17d) -

From (E.17) the matrix S is given in standard coordinates by

S 1, ( V E )-lU~ H- UH + II H -l UH+ U UH (E.18)
1UI+ 1 1 U 211 1 V1 1  U1  2 2

which implies

H~1 U U( UHV -I H H + V -l H (.9
11 1 1 1 1) U1 2 UU 2  1 1Q( U1H 1 1  U1

Note that

i-(I + U1H E) UH E (I + U -lz (E.20)
1 1 U 1 1 V1Z

Using (E.20) in (E.19) yields -

or

T V Z (I + U H V E 1 lUH (E.22)

from which (8.22b) and (8.22c) easily follow. To obtain (8.21a) from (8.22a)

define

11IL -l HS -I-V E (I + UvE) U (E.23)app 1 1

and note

%
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U1 HVlE(I + U HVlE) -1 + (I + UlHVEl)l - I  (E..24)

+ U VlZ-i U1  1 HiEl ) - I  (uIHVl1
1,V + U11 1 1 1 (E. 25)
(I + 1 + H -l+ UHHV - U I (E.251 )V H

Sapp , I VI(UI 1 VI)-IuIH 'IVU v (U )1(I + U EHV1E 1)-IH . (E.26)

Using (D.11) in (E.26) yields

"" 2)H -Iv2H HV-V -IuIH

S app  U2(V2 2)+V 2  +v1(U1 1 ) 1  UI Iz) U (E.27)

To obtain (8.21b) note

)Sapp ( U(22 [ V2 ul)U+(v 2 u 2 )U 2  [ (UIUv )+U 2 (U 2 1 )]

app~ 2(U2 2 22V) 11 1 1

(U 1H - (I U 11v r )-1 UlH

or

SHH Zu1  U-IU 1
1  

1 ' UH+U H l1(V HU) HV )( 1 V )1app 2 U12 U2(I+ 1 1I1 U 21 2 u2 )- 2u +(u2H11) 1 1)

• (I+ UIHV 1 I ) -]U IH . (E.28)

Using (E.24) in (E.28) yields

U2U+ U1 (I + ~ 1 E 1 ) -IuIH -

H HV -1 H

.. U U + U I+ U zi app  22 1 111 1

,.-. + U2[(V2HU2)-I(V2HU ) +V ( 2H (UIHI -

- (U2 Hv1)z(I + U1HVl1Ez)-lIU
H

From (D.9) it follows that
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Sapp 2 U2 02H + U (I + UIHV E 1)-lU 1H - 2(u2 Hv1 E 1( + UIHV1 E) UH

From which (8.21b) follows.

To derive (8.21c) from (E.27) first note

U' '( U E -l

(uI1 VI) -(I + U- [(I + )(U

- [(ul V1)(1 + E1U1HV1)1 -l

= (I + E 1u1 HvI )-l(U1 HV )1 (E.29)

Using (E.29) in (E.27) yields

Sapp = U2 (V2HU2 )- v2H + V (I E ZU HVl 1 -(UIHVl)-U H

S[V(VIHU2 + V ] (v2Hu2 1V H
L 1 1 2 / V 2 ,. 2 2 J 2 2 2

;,:.-.: + VI(I + zlU I (U HuI )V + )(.30)

-V 2 V2
H + V1 (1 + 1 U1 HV1 )-I VIH

HU(HU -1 H -1 (Uj7V 1 H1 V2  HV
+ V1 [(VI U2)(v2 u2 + (I + E UIV 1)-(U 1 1)-(UI1V2)]V2

Using the identity

(I+~UHV )-1 1 (1 + E 1UHV 1  uHV
11 1l 1

yields

S v H + Vl(I + EIU HV )-Iv H
app 22 1 111 1

+ Vl[(V 1 Hu2 )(V 2
1 U2 ) 1 + (U1 HV1) -(u 1HV2 ) - (I + z 1 U1HVl) - 1u1Hv2 ]v2 H

A. . I A :.7.. . . . . . . . . . . . . . ..- . . -. -' .. i--.. .'."-... , .--- -. ,N..-...... . .- '-'.. .t'..A.'-A., N.A .',.....'.".,f.'-lA *.'.. , .... . .
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From (D.8) it follows that

S V V + Vapp 2 2 1( 1 EUH 1 1

5 - 1 [(1 z l'l~)-~llV

which is the desired result.
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APPENDIX F

COUNTEREXAMPLE TO CONJECTURE THAT LOG aIS HARMONIC

Let

Then the singular values of M(s) are the nonnegative square roots of the4

eigenvalues of

rH 21 S 01
(H(s)] H (s) =L J.

(F.2)

22

2s 112]

det[XI - M(s)] HM(s)]=

x~ 2(1812 + 2)X + Is! 0

~l2= 1 ++2 /js77 (.3

-s 1  1+ 2s 2 +1(F3

2 2 2
y Is! =x + y .(F.4)
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Then, (F.3) yields

'.-i. cI - 1 + / Y + 1

(F.5)

a2 -J+ y +

Dropping the subscript on a:

2

a2 ax a ax]2

(F.6)
-ogo .a[ a_

22 2 (ax

2 2 2 a_21
ay lo a 3 a

a." x2  y Iso that

2 2
ax ay 

(F.7)

aL ax ay / (

.',

- .

.-.- 
.. .
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From (F.5)

i- °l 2 x ]

ax ax
a- a VY (F.8)I 301 3 2  y -'

ay ay

K~)K a2
i"+ ="(F. 9)

a 2 2

ayy+l

From (F. 8)

2 2a x -

ax 2 ax2 + I +,

ao a a CT2
1 2 1 y

ay 2 2 -y + i

Also,

(,32 1 + + (/x+ 21

01 ( = (y2

2 
-~y 

(F. 11)- \- 1, 1-- [y + .+ 1 + -.

Define

K 1 (F. 12)
S 2 + 1)

ri"y 1
,, . . .1

.. - . i T . . " - . ." . - .. , '" ' . .. " '"'' " - " " . " " " .
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Then, combining (F.7), (F.9) and (F.11) yields

a 2logo1  a logo1 ______

1__ 1__ 1+'Y +1 2 2

2 + K 2 (y +1 + ry + 1__ (x y)
ax ay2  1/Y +1 7

2 2
-(x +y

K f 2 +(2./3)

1 r1

72 loo 2 =~ ( 1 )(F.13)

2'

vy -+l

a.3

v 2 .og

.I~ + 1
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APPENDIX G

DIFFERENTIABILITY OF SINGULAR VALUES AND VECTORS

In this Appendix, various results concerning the differentiability

properties of singular values and vectors are presented. These results are

based upon properties of eigenvalues and eigenvectors of Hermitian matrices;

these properties are discussed extensively in Kato [32]. There is some

overlap between this Appendix and earlier results by Freudenberg, Looze and

Cruz [10] and MacFarlane and Hung [60]. This overlap will be pointed out in

the discussion.

Singular values are by definition real valued functions of the

complex frequency variable s= x+jy. It follows (48] that they cannot be

even locally analytic in this variable. Recall one characterization of

analytic functions is the existence, at each point in the domain of

* analyticity, of a convergent power series expansion with nonzero radius of

convergence [48]. Lack of analyticity implies the nonexistence of a power

series expansion in s; however, it can be shown that such an expansion

exists in the two separate variables x and y. This, in turn, shows that

singular values are analytic in these two variables. This fact was pointed

out by MacFarlane and Hung [60]. The results of [60] concerned only

analyticity, however, and were limited to the case of distinct singular
.0

values. This is inconvenient when studying properties of repeated singular

values. In particular, the present motivation for discussing analyticity

in the two variables is that analyticity implies the existence and

continuity of partial derivatives of all orders. The converse is not

.:7
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true, however, and the present results can be used to discuss existence of

partial derivatives even for multiple singular values for which no power

series expansion is possible. First some definitions will be presented.

* Definition G.l: A function f defined in a neighborhood of a point

x (,X 2) 
2 is at (x,y) if the kth order partial derivatives

a kf ka "alaxa2 , a+a 2 k, exist and are continuous at x. Functions in C

are said to be k-times continuously differentiable. a

Definition G.2 [61, p. 2]: A complex-valued function f defined on an open

" subset DC C is analytic in D if each point w - (wl,w 2 )6 D has an open

neighborhood N, wENCD, such that the function f has a power series

expansion

S -
f(z) - (z k ) (z22) (G.1)

.k,LO

which converges for all z - (zlz 2) EN. U

Definition G.3: A complex valued function f defined on a neighborhood of

2• a point w - (wl,w 2)EC is analytic at w if there exists an open neighborhood

N, wEN CD, such that the function f has a power series expansion (G.1)

at w which converges for all z6N. U

Thus, a singular value a is analytic at (xoYo) provided ai has a

power series expansion

a i(x,y) - ck (x-x) k(y-y)t (G.2)
k,z 0

L which converges for all (x,y) in a neighborhood of (xoyo) in C Note

that for real values of (x,y) and (xoY o) the series (G.2) sums to the

[ . . - - .-. -- - . .. -.- - -. -. .- -. . .. . '- • . -. ., ." . " ." .- s . ..-, '. '. ', ' .' , .'. '. < -' ',,. ..N
"- ."- - - " ¢; '" ' ', "' .. ." . - - "'- '... - , '- ' ".' '- - "" ' " " -. . . . " -""" " -*' .3L; ,TZ '3
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value of ai[M(s- x+ jy)], where M(s) is the matrix being studied. This

fact implies that the ck are real numbers.

Given the expansion (G.2), the partial derivatives at (xoyo) with

respect to x and y may be determined from the ckL. Even if an expansion (G.2) -.

does not exist, however, the partial derivatives may still exist and be

continuous. Results will also be presented for the singular projections

and singular vectors.

* Definition G.4: Let 1i(s) be a right singular subspace of M(s). (Note

Ui (s) is not necessarily one-dimensional.) The orthogonal projection

[32, p.57] onto U.(s) is denoted by P and is termed the singular projection3. ui

onto the subspace U . Similarly, P - will denote the singular projection

* onto the left singular subspace V%.

'.'°Theorem G.5: Let M(s) be a matrix taking values in Cn xn whose elements

are functions of the complex variable s= x+ jy. Let DE C be a simply

connected region of the complex plane. Assume that:

(i) For all sE D each element M1 (s) is analytic in s.

(ii) The number of distinct singular values is constant in D.

Note this implies that the singular values of M(s) can be ordered so that

al[M(s)] > a2 [M(s)] > ... > an[M(s)] for all sED. Moreover, if two singular

values are equal at any point of D they are equal VsE D.

If i) and (ii) are satisfied, then at each point so x° +jy ED:

(1) If oi[M(so)I # 0, then ai is of class C . That is, partial

derivatives of all orders exist and are continuous.

(2) Each right and left singular projection is of class C.

Let condition (ii) be replaced by:

(ii)' The singular values of M(s) are distinct for all sE D.
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If (i) and (ii)' are satisfied, then at each point so = ox0 +jy 0 ED:

(1)' If a [M(so)] 0 0, then a has an expansion of the form ."-
i 0

(G.2) and is thus analytic in the sense of Definition G.3.

(2)' Each right and left singular projection is analytic. U

Proof: At each point so x +jyo ED it follows from (i) that M(s) has a --

power series expansion

i
M(s)- Mi (S-s) (G.3)

Now, consider M as a function of the two variables x and y, where

these variables may assume complex values. It will now be shown that M(x,y)

is analytic in (x,y) at (xoyo).

Note that (G.3) shows M(x,y) is continuous in x and y. By Osgood's

Lemma [61, p. 2] it follows that if M(x,y) is analytic in x and y separately,

then M(x,y) is analytic in (x,y). First, setting y= y in (G.3) yields a

power series expansion in x:

M(x,y)- Z Mi(x-xi (G.4)

This power series has a nonzero radius of convergence since: (a) the series

(G.3) has radius of convergence R> 0; (b) the series (G.4) converges for

real values of x with IX-X < R; (c) by Theorem 1.3, Chapter III of

Conway [48] it follows that M(x,yo) in fact converges for all complex

values of x with Ix-xo < R. Thus M(x,y) is analytic in x at (xoyo). A

similar argument shows that M(x,y) is analytic in y at (x0 ,yo). As remarked .I

above, Osgood's Lemma then implies that M(x,y) is analytic in (x,y) at

(x° 'y°)•

0

z~
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UM.

Define the matrix

H i
M(xy) - M (x-jy-so) (G.5)

imo 

0

Note that for real values of x and y

H A TM(x,y) = [M(xy)] = M (s) (G.6)

9, II

- where denotes complex conjugation. Thus, M is not analytic in s,

yet M is analytic in (x,y) by the same argument used for M(x,y). This, of

course, is a consequence of the definition of M; the definition does not

involve taking the complex conjugates of x or y.

Next, the matrices

M.R(x,y) A M(x,y)M(xy) (G.7)

and

M(xy) = M(x,y)M(x,y) (G.8)

are also analytic in (x,y). Moreover, the singular values of M(s ),

S= Xo+jy are the nonnegative square roots of the eigenvalues of

MR(xo,Yo ) and ML(xo,yo); the right singular subspaces of M(sO) are the

eigenspaces of MR and the left singular subspaces are the eigenspaces of Mt.

To summarize, at each point so  x° + jyED, the matrices M.(X'y)

and M R(X,y) are analytic functions of (x,y) in some neighborhood N of
R2

(x oy o)e1R. Note this implies these matrices are C in x and y. By Kato

[32, p. 134, Theorem 5.13a] the eigenvalues and eigenprojections of ML and MR

are also C~ functions of Cx,y) in the neighborhood N of (xoYo). Note the

40 0
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eigenprojections of ML are the left singular projections of M and the

eigenprojections of MR are the right singular projections of M. This
%R

proves (2).

If ai[M(so)] 0 0, then by continuity there exists a neighborhood

N' C N of (xoy o) such that ai[M(xy)] 0 0 V(x,y) GN' C N. Since

* - oi [Mx,y)] - + /Ai[MR~x~y)] +- + Ai[ML(x,y)]), it follows that ai[MCx,y)]

is C in N'. This proves (1).

Now, suppose that (ii)' holds. Allow (x,y) to take values in C2

rather than 1R2 . By continuity, (ii)' implies that the eigenvalues of

M(x,y) and MR(x,y) are distinct in some complex neighborhood of each point

K (xY0 ) with x0 and yo real. Thus, by Kato [32, p. 134, Remark 5.13b] it

follows that the eigenvalues and eigenprojections of ML and MR are analytic

in (x,y). Conclusions (1)' and (2)' follow.

The preceding theorem shows that, away from points where the

number of distinct singular values changes, partial derivatives of all

orders of the singular values exist and are continuous (in both x and y).

* Thus the computation of the partial derivative of a singular value which

was performed in Chapter 9 can be rigorously justified. The above theorem

also shows that the orthogonal projections onto the singular subspaces

possess continuous partial derivatives of all orders. As pointed out

earlier, the choice of singular vectors is not unique. Kato (32] and

- MacFarlane and Hung [60] each give a method for constructing singular vectors.

First Kato's method will be discussed.
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Let Ui(X,y) be the right singular subspace of M(s- x+ jy)

cresponding to the singular value ai(c~) Asueta aife i

and (ii) or (ii)'. Then, there exists a right singular projection Pu (x,y)

satisfying (2) or (2)'. Let the columns of Ui(xo,,y ) be a set of right M

singular vectors; i.e., an orthonormal basis for Ui(x Py0) Then,

[32, pp. 110-114], the columns of U (x,y) defined by
i

U i(x,y) =W(x,y)Ui(x ,y )

2 -1/2
W(x,y) ( I - (P (X,y) - Pu (x ty0) (G.9)

ui i

are a set of right singular vectors spanning the right singular subspace_

U i(x,y). Note this formula is only guaranteed to be valid locally; this

is because the condition

P u (x,y) -PU (o,yo)1 2 <1 (G.10)

must be satisfied. This condition implies that the right singular subspace

U (x,y) can contain no vector orthogonal to the subspace 1i.(x ,y0) if

* (.G.10) is satisfied then the square root in (G.9) is defined by (32, p. 34] -

-12 0 \n

/-l/2\ ~ 1 1/2 )*-1-(-
A)l (- (G.11)

(1/2>

~~~~ 1 - *
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The set of singular vectors (G.9) is, of course, not unique; one can multiply

Ui(x,y) by any other unitary matrix which leaves the subspaces Ui(x,y) andI"
U (x,y) invariant. If ai[M(xoyo)] # 0, then a set of left singular vectors

can be obtained from

Vx, y) - MCi,- i~x~) = i(Xy )  M(x,y)Ui(X,y) .(G.13) '

If (ii) is satisfied, then the singular vectors so defined are C ; if

(ii)' is satisfied the vectors are analytic in (x,y). This shows it is

possible to choose these vectors to have continuous partial derivatives of

all orders.

"* MacFarlane and Hung [60] propose a method for constructing singular

vectors analytic in (x,y) when the singular value has multiplicity one. The

construction is again valid only locally, although this is not pointed out

in [60]. (The construction assumes a matrix in has Z-1 linearly

. independent rows and that these are the first Z-1 rows. This latter assumption

can be made, without loss of generality, at a point, and continuity implies

it holds in a neighborhood. However, a more general claim cannot be made.

It appears that the same difficulty is present here as in the construction

- of Kato. Namely, the singular subspace Ui(x,y) may become orthogonal to
|i

Ui(x oy). In Chapterlo the ability to construct a set of singular vectors

which form a basis for a given singular subspace and which are continuous

is studied. It is shown that, in general, this is possible only locally;

thus, the deficiency in Kato's and MacFarlane and Hung's constructions

cannot be overcome.)

{.:. . .. .........:c . . -. ,..: _ ........ ... . ..... , . , . .. . ,.= .. . .... ... .... .
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..

An alternative approach to the construction of sets of singular

vectors can be based on other results in Kato [32]. These results can be

'0 used to give singular vectors along a curve y(t) = x(t) + jy(t) in the

complex plane. This construction is valid only along a path and not over

an open set in the plane. However, the construction has other convenient

features; no assumption similar to (G.10) need be made, and the number of

distinct singular values is allowed to change.

While Theorem G.5 used no special properties of Hermitian matrices,

the next result does; these properties are necessary to be able to treat

points where the number of distinct singular values changes. These results

were presented in [10] but are repeated here for completeness.

nxnTheorem G.6: Let M(s) be a matrix taking values in C whose elements are

functions of the complex variable s-x+jy. Let y(t) x(t) + jy(t),

- = < t1 < t < t2 < + , be a curve in the complex plane. Assume that:

(i) y(t) is analytic in t; i.e., at each value of to  (t 1 ,t 2 )

there exists a power series expansion with nonzero radius of convergence

i °Y(t) c E c(t-to0)  .(G.14)

i=0

(ii) Each element M.. (s) is analytic in s at all points of theij

image of y(t). Let to E(tI t ) and let o(to ) be a nonzero singular value

of M[Y(t )] with multiplicity k. Then there exists an open neighborhood N

such that to EN C (tl,t2 ) and analytic functions of t

0 2

i-y

-. . . . . .. . . . . . . ... -i - . ""." " . "-;'. - ",',
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+

:NC M- M

I..

u N C M-) Cn

Sv N C IR-. 1n , -l,...k

such that

(1) a (t), t C N, is a singular value of M[y(t)] with left

singular vector vY(t) and right singular vector u Ct).

- (2) a (t) - a(to).

(3) The columns of the matrices

! W![

a(t) - [Ul(O) I , uk(O)]

and

k

are respectively orthonormal bases for the right and left k-dimensional

singular subspaces U and V) of M[Y(t )] corresponding to aC(t ). U

Note there is no assumption that the number of distinct singular

values is constant along y(t). Thus care must be taken in numbering the

singular values and vectors near exceptional points, (i.e., points where

the number of distinct singular values changes). For this reason the

singular values in Theorem G.6 are not numbered according to, say,

decreasing order of magnitude. Note also that there exist singular projections

P and P which are analytic in t. Further discussion is found in [10].

uv

L
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Proof of Theorem G.6: Assumptions (i) and (ii) show that the matrix M is

analytic in t. Thus, M can be expanding in a power series

M(t) = Z Mi(t-t0) (G.15)
i-O

By a construction similar to that in the proof of Theorem G.5 there exist

matrices ML(t) and MR(t) which, for real values of t, are equal to

M(t)[M(t)]H and [M(t)]HM(t), respectively. By Kato [32, P. 139, Theorem 6.1] .7

the eigenvalues of bL(t) and MR(t) are analytic at each real value of t.

Thus the nonzero singular values of M(t) are also analytic at real values

of t. The result in Kato also shows the singular projections are analytic

in t and on page 140 of [32] sets of basis vectors for the projections are

constructed. These basis vectors are analytic in t and are obtained as the

solution of differentialequations along y(t). One can use this construction

to obtain a set of right singular vectors; the left singular vectors are

then given by

v (t) M[Y(t)]u-(t)

Thus singular vectors with the desired properties exist;

uniqueness is not guaranteed, of course.

Note that derivatives of all orders of the functions aZ, uX and v

with respect to t exist and are continuous in t. By letting y(t) = x + jy + t

and Y(t)= x + jy + jt, the partial derivatives of the singular values and

vectors with respect to x and y can be evaluated at so x +Jy. These

00

• I '> " ' % L a ' °" - " " ' '" " '.""" ,-'- ." . - . -"-
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partial derivatives are guaranteed to be continuous only along the respective

curve y(t), however. In particular, mixed partial derivatives do not

necessarily exist. Of course, if s is not an exceptional point, (i.e., a

point where the number of distinct singular values changes) continuity in

both x and y and the existence of mixed partial derivatives of all orders

follows from Theorem G.5. The behavior of singular values and vectors near

exceptional points will need further study if it is desired to extend the

results of this thesis (in particular, the Bode integral relations) to

more general situations.

The results of Theorems G.5 and G.6 can be used to obtain formulas

for the partial derivatives, with respect to x and y, of the singular values

and vectors. These formulas were stated in Chapter 9 for the case of

distinct singular values, but are here derived rigorously.

Theorem G.7: Let M(s) satisfy the assumptions of Theorem G.6. Let o(so) be

00singular value of M(so ) with multiplicity k. Let y(t) [tl~t 2 ] 
- 0 be a .

, curve satisfying the assumptions of Theorem G.6 such that y(to) =

t I < t <t Define

F W(t) = diag[aW(t) (1 (G.16)
I I

U a(t) [ul(t) uk(t)] (G.17)

and

... v Wt) [Vl(t) V
' ' '''(t vk(t)] (G.18)

where the at, u z and v z are guaranteed to exist by Theorem G.6. Then,
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d e[V HdM (G. 19)

dt a T
t=t 0  t=t 0

where

Al H (.0Re[A] 1[A + A] (G.20)

a

Since the functions a (t), uW(t) and v (t), 9ffi,...,k, are equal -

to k of the singular values and vectors of M(s) along y(t), it follows that

the partial derivatives of these singular values and vectors can be computed

from those of these functions. Thus, setting y (t)= s + t, tE (-s,E) and

y(t) =s 0+jt, tE (-e,c), allows the computation of the partial derivatives

Da au av aa au av
x ' , }and{-", -- , , respectively. Moreover, this

construction shows that continuous partial derivatives in one variable of

all orders exist. For singular values of multiplicity one,a construction

using the results of Theorem G.5 shows that continuous mixed partial

derivatives of all orders exist.

Proof of Theorem G.7: Properties of the singular values and vectors imply

that, for real t,

H 2U (t)N0(t(t)t)U (t) - W(t) = 0 (G.21)

It follows from (G.21) that (dropping dependence on t)

d" HdU

at M HU + U HMHM d

(G.22)

H dM U  d--
a dt 7 dt

.1
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U H u E2 + z UH dU
dt a a dt

(G.23)

+Ua dt Ua t=

At t=to , 2to) .t )1 Thus, the first two terms of (G.23)

yield:

_-r- o  
2 U H a]o o2(to ) [aU + U H fa]

dt a a dt + a a dt (G.24)

t=t t=t0 0

From the identity

U a l kxk

it follows that

dU aH[UdU HdU
cit a a dt a dt (.5

=0

Substituting (G.25) into (G.23) and using various properties of singular

values yields:

HdMHM

... = 2Z Re[v ° H U5 ]

dt a *a]

H dMH HHd
M 2ZtdE Re[v H em U]

0 which Re[V H U

which was to be proven.
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.,'., da £

It should be pointed out that the derivatives -- can be calculated

using any orthonormal basis for the right singular subspace and the correspond-

ing set of left singular vectors. Thus, at exceptional points so - y(to)

there is no need to determine precisely which basis of the right singular

subspace of M(s0 ) yields an analytic set of right singular vectors along

Y(t). This is discussed in detail in Freudenberg, Looze and Cruz

[10, Theorem 2].

Explicit formulas for the derivatives of the singular vectors can

also be obtained. First, some additional notations must be introduced.

Let the number of distinct singular values of M(so) C nn be
0

*--2' given by N. Let the singular values be denoted by o,i-l,...,N, where
"A.

N
the multiplicity of a i is given by ki. (Note Z k. n.) Then there are

i-i
N right singular subspaces Ui,i-l,...,N with dim(Ui)-k i.

Theorem G.8: Let M(s) satisfy the assumptions of Theorem G.6. Let

Y(t) : (tl,t2]- - be a curve satisfying the assumptions of Theorem G.6

such that y(t S, tI < to  t2  Define
0 0 1 0 2.

L-:-" Zi~) - diag[ai~t W ' a ii (G.27) '

:-"~ ~ •u uit [ (t) 'i.t i I "' iki (0) (G.28)

and
V i(t) I "'"I viki(01 (G.29) ".

i

where the ait, uit and v i are guaranteed to exist by Theorem G.6. Then the

derivatives of U and V can be written

o .9

* ,.-* - . .9... - *-
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dU N HdU\
Efu -m (G. 30)

and U dt

dV N d (G. 31)
M- V(VUd

For rn~i

dU/ HH i( IH~L HI d
u3  t~2-)Lr dV ~a + a V Uj (G. 32)

and

andV

~H 1 dOG.5

whilea+ Hd Ul(G 3

dv d

Re [U i Ht 0 m~[H.k (G. 34)

whie

[V u u(G. 36)

i dt dt a i dtU

wher

Im[A](A - '] (G 3 7

/ .~. *~2j
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Proof: Using various properties of the singular value decomposition and

dropping the dependence on t:

,' "AD-, Ui E d- ' 4q -- '- :

For m~i

MHU - 2

u dMH i dU i . _ 2
U -- - 0 + U E- . (G.38)

dZ dU
m t i mmdt i md dt i

2 2Evaluating (G.38) at to yields E a f I and E - a I, which in turn
m ki

implies

dU 1
UH i I H dM

m d (a2 2 M dt i

"( O U~ [H dMH v or + a V H dM Vi]

Thus, (G.38) is proven and (G.33) follows similarly. Equations (G.34) and

(G.35) follow from (G.25). Finally, from

V HMUi -E

dViH  dU H d di
-at viri +  iuiH d + V i Ui -- (G.39)

At t-t, Z a Oilk This fact, and rearranging terms in (G.39) yields

->; ? -''. ",?; "- '- "0 .-- 1-" "" " ' ' 1"' -k . ' -''' .. . '"f 'x ¢ ; ' '' .-,- -....-.- ,-2 '- ""'"- '""". -"'""-. -. .
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H j dM 1 H
i - uiH. -"]

which proves the result.

The above theorem again shows the existence of a degree of freedom
dV dU

in the singular vectors: Vi -aj- and U -- can be chosen as arbitraryi dt

functions analytic in tsubject to (G.36). Note also that the comments which

were made following Theorem G.7 concerning the partial derivatives of the

r. singular values with respect to x and to y also apply to the singular vectors.

Recall the construction of right singular vectors used in the proof

of Theorem G.7. This construction, based upon the results of Kato [32, p. 140]

yielded a set of singular vectors analytic in t, satisfying a differential

equation. It is interesting to investigate the choice of singular vectors

obtained from this procedure.

For simplicity assume that the singular values are distinct at s 0

Let y(t) be a curve through s and assume M(s) and y(t) satisfy the assumptions

of Theorems G.6-G.8. Define

V.U(t CU (tI ( (G.40)

where Ui(to) is a unit vector in the right singular subspace Ui(t0). A

" transformation function W(t) can be constructed so that, locally,

is a right singular vector in the subspace Ui(t). Let Pk(t) P (t)

denote the orthogonal projection onto the subspace Uk(t) and define

kj
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Q(t) P(t)Pk(t) (G.42)
k-i1 kt

where

It can be shown that W(t) is the solution of the differential equation

d

n ot W(t) Q(t)w(t) (G.44)

with initial condition W(t) - I. From (G.41) and (G.44) it follows

that
77T

dui(t)
dt = Q(t)ui(t) . (G.45) [

Hence, supressing dependence on t:

H dui Hui-- u  Qui

HN (G.46)
U P'P u

Uj kk i
k= 1

Since Piui = ui and PkUi O,k#i, (G.46) reduces to

du -H H
u - i H 'u (G.47) "
Ui dt- i Ii

HNow, for real values of t, Pi(t) - [Pi(t)] i.e., P.(t) is Hermitian.

Moreover, so is P'(t). Thus, uiH Piu is a real number. But since
du
iReu 0, it follows that both sides of (G.47) equal zero. Thus,

ei "

using Kato's procedure yields right singular vectors with the property that
H dui

• i - --0. The constraint (G.36) implies that the left singular vectors

given by

~~~~........... ... #. ' .'.. . ...-.......... .. ................. .-. ..... ,.
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v1 M(t)ui(t) (G.48)

must satisfy

dv d
H di ._ v i 1vi dM

v t -- vi ui]  (G.49)

Note, in particular, the left singular vector given by (G.48) is analytic

H dM
in t. This implies that the quantity Im[v T u i is also analytic on t.

i dti

WWI Vn

-.'..,..-."-.-.-. . .,-. ...'. . *. *. . . ....- ' "'-' - - "'" - . . .. ..-.-. .-..- .. • . . .""
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APPENDIX H

PROOF OF THEOREM 9.7

From (9.16) and (9.22) it follows that

-4 aalgoi alHg i H H i
A a -dx + ax dy] - [vi - - u, -x-]dx

vH vi H aui
+ [V -- ui -9yldy (H.l)

which in turn yields

2 2
a l oga~ a loga\

dA a 2 1+ a 2  )dxAdy
ax-~ D a y

+'':"" ( 20g i 21 i -- Idx:d

=- '--y - y ]dxAdy + I- -y - z " y Xa (H.2)

Thus,

H H
2av. av. au au

v-og-i 2 Im- -- -y} (H.3)ax 3y 3x ~

From (9.17) and (9.18)

ui  n I H ui (H.4a" --ax ka uk -x)(.a

;V n 3v

i  H i

S. v( (H.4b)

h y - )(uk  - ) (H. a,
,. k-i K X~

3x )y k Ix k v
k 1

.*- x .y . .x ( 5b
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nl2va -2 H u H aui Hau ---7 loga 2 E ~Im{ (v --W) (vk -) (.6
Sk-i a 3y "kax'"'ka-y'

For ki,

H 1 1 HaH 30 am
uk 2 {at uk -x vl + ak v u

" a - 2 20 viax 'i u+ k vkax
(a1 a

X0 H au1 {avH am a H aH
"Ic ax -2 2 {i1ix uk + k i. ax vk'

Using Lemia 9.6:

au - u.

H m H MH

"I ax 2 2 {a[(ivi 3y- k u y u),

Thus,

H i H U 2
.(a -ax _ ak) 2kik yi

+ oaka 2j Im[(vH aMu MHH~i y . Ivk yui

- (H.7)

au au
Im{(vH (cI 2HiC iviT - r2 H amk2 2 1 H3M 1 2 1ax (vk ay)} 2i 22 TyIVayk -i uiI.*'-

- Ok

Similarly, it can be shown that

' "a
H  

) i V ) H 1 1 2 2 1 f a uk12  2 .. 1 M -2

% -A
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Using (H. 7) and (H. 8) in (H. 6) yields

2 I iR V H au i H a
V log a, M-2 Hi(v ( -) - (u 15 - (U~ -)

+ 2 Z 1 iVH' k2+ I MU1)(H.9)
k~i a 2- 2 ykkT

Let the first term on the right-hand side of (H.9) be denoted (I). Then

from (9.22) and Lemma 9.6

(1) -2 Im(JImIHu + (u' i)]+( )CF£ ia ax Cy a UJ.i y

au a
-(uH i)(i 'iax a

= m-m(v H-I u] H3M + ,Hi W_ H am
1m H3 Im[v --- Uj a (UI(
2 1 xji 3 i BmVi ya
ci

Say a T

Since u -an i- are both purely imaginary numbers, it follows that%i ax i. ay
(I) equals zero. Using Lemma 9.6 one more time in (11.9) yields

7 log -~ 1 2 V11 ± + IVM 2

k~i a~ - ak

+ I vkT Muji+ I v Tyu !

which was to be proven.
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APPENDIX I

PROOFS OF THEOREMS IN CHAPTER 12

Proof of Lemma 12.1: For each aG[-w/2,r/2], define M,,(a) - lim M(Rea).
*R

Since M(s) has proper rational entries, it follows that M,(a) exists and is

independent of a. Thus define M. - M(a).

First, suppose that M has rank n. Then (12.7) is satisfied,

77 for i-,...,n, with k -O and ci a at[M]. Suppose, in addition, that

a[m ] b t[Mh for i~k. Then (12.8) is satisfied with the mI and Bi

given by the left and right singular subspaces V [M] and U [M. ] and with

the wi and z a pair of singular vectors v i[M] and ui (M.

Next, suppose that M has rank m < n. Then (12.7) is satisfied

for l,...,m with ki=O and c i  a MJ. Suppose, in addition, that

a (M] a [M] for i#k, i < m, k < m. Then (12.8) is satisfied by the left

and right singular vectors vi [M.] and ui[Mj, Note that M(s) may

N be decomposed as

1~M(s) M + s M1(s) "'

rn:, where M1 (s) is proper. Define PVI to be the orthogonal projection onto the

subspace V C_ Cn spanned by {v(M ],...,vm[M ]}. Define Pu0 to be the

orthogonal projection onto the subspace U C C spanned by

fu 1[M],...,Um[M,] . Similarly, let the projections onto the orthogonal
1i

complements of V and U be denoted by Pv = I - P andP I -P

By continuity, there exist m singular values and singular subspaces

a iM(s)], 1)i(M(s)], and Ui(M(s)] such that Va4 [-7r/2,Tr/2], and iil,...,m

i-

. . .
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(Moo] - rn [i[M(Re a)]

Ji[M ] rm 10 Ji[M(Reia)] =

U [MOO - lir Ui [M(ReJa)]

m m

(Note that V. = U 1)i[M] and U. = U i[M.].) Again, these limits are
il iml m m

independent of a. Similarly, define U (s) = U U i(s), V.(s) - U Vi(s),

and projection operators P (s), P (s), P± (s) and P.(s). Definev ,0 VC0

Hl(s) P P1 0 (s) 1~ (s)P1 (C(s)

and

M1 00 lim MI(Ree)

where the limit is independent of cE [- /2,Tr/2]. Then the n-m singular values

of M(s) which approach zero as Is- satisfy VaE [-Tr/2,-/2],

lim Ra i(Reia) = ci[M] il,...,n-m"
R~o

To show this, recall that by definition

m~l[M(s)] .max IJM(s)P (s)u"

m IIl u-

which follows since M(s)Pu(s)uE 1(s) for uE (s).
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Thus,

P, axR(s) M~ (s)]Ps- (s) I 2

and

lrn Rcy m 1 [M(R ia) > G[M4l*

since, by definition, Jrn P I(Re ja )M P (R 0 for all ctE [-7r/2,rr/2].

Moreover, from

a k+l [M(s)] < U[P 1 (s)M? G(s)] + -j--a[M,1(s)]

it follows that

lirn Ra m1 (M(s)] Y a[Ml.]

Similarly, it may be shown that

lim Ra IM(s)] a [ M] I i-l,.. .,n-mn_

Let M have rank m (note ml < n-rn). Then (12.7) is satisfied by setting
N1 O 11

km~i 1 and cm+,~ i M~ for i1l,. . .,m.

Suppose that the nonzero singular values of M10 are distinct. Then

(12.8) is satisfied by left and right singular vectors v v Rl and

-

a [~] lim ReJ v~ M(Rejo)ui
R ooo
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1-mRe ~jc 1 HA s H
r." R " Re j

VH H u
i 1 i  -

If rank M^ m1 = n-m, then the above procedure gives the values of

ki and ci in (12.7) and the zi and wi in (12.8) for all i-l,...,n. If

mI < n-m, then there exist singular values for which (12.7) is satisfied

for ki > 2. The above procedure can be repeated by writing

^ M1 "12 +M 2

where M2 is proper. The singular value decomposition of M. may be used to

obtain projection operators onto the nullspace of MI. and its image. These

in turn may be used to define M2 (s) similarly to s(s). Since, (a) M(s) is

rational, (b) det M(s) t 0, and (c) only n singular values exist, this

procedure may be repeated until values of ki, ci, wi , and zi are found for

all i1l,...,n. U

Before proceeding with the proof of Theorem 12.2 it is necessary to

present some additional Definitions and Lemmas.

Definition I.l: Let g(s) - g(x,y) and h(s) = h(x,y) be real valued functions

of the complex frequency variable s-x+jy. Then f(s) g(s) + Jh(s) is said

to be conjugate symmetric provided

g(s) - g(s) (1.la)

and r

h(s) -h(s) (I.ib)
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Equivalently, -

f(s) -f(;) (li.1)2

Lemma 1.2: Assume that f(s) -g(s) + jh(s) is conjugate symmetric, and that

g(x,y) and h(x,y) have continuous partial derivatives. Then

(I.2a)ax ax
(x.y) "I(x,-y)

211(x(I.2b)

2h hj (I.2c)

(X,y) (x-y)

ah 31i(I.2d)
(xh y Ik(x,-y

Proof: By definition,

-~ - ur g(X+tAx,y) - g(x.y)
ax A~x

Mxy - m g(X+Ax,-y)- g(x.-y)

(xxAy)

y- 0 rn

(XY1

.................. ,--Ay) . *. .. .. . 2-. .. . .
li. 

A .
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- -li~m g(x-y+Ay') - g(x,-y)

Ay 0

Dy(x ,-y)

where Ay' Ay. Proof of Equations (I.2c) and (I.2d) follows similarly.

U

Lemma 1.3: Let M(s) satisfy the assumptions of Theorem 12.1. Then each

singular value and its associated measure of phase difference (12.3) have

the property that f(s) - loga(s) + j[O(s)-6(0)] is conjugate symmetric.

a

Proof: Let the singular value decomposition of M(s) = M(xy) be given by

M(x,y) - V(xy)Z(x,y)[U(x,y)] H (1.3)

Then each singular value may be written (suppressing the subscript) as

-(x,y) = [v(x,y)]HM(x,y)u(x,y). The left and right singular vectors v and

u may be written as in (12.2), yielding

a(x,y) exp[jAe(x,y)] = [P (x,y)]HM(x,y)p(X,y) (1.4)

Since rational functions are conjugate symmetric, it follows that

M(x,y) = M(x,-y). By assumption p and pu are also conjugate symmetric.

Thus (1.4) implies that a(x,y) = c(x,-y) and exp[je(x,y)j - exp[-je(x,-y)].

Hence 8(x,y) = -e(x,-y) + 2k. and O(x,O) = kr, with k even if

exp[je(x,)], 1 and odd if exp[je(x,0)] - 1. Finally, the assumptions of

Theorem 12.2 yield that e(x,0) is constant in x. Denoting this constant by

'--, 9(0)yields the result.Next, if C is identified with ]R a basis for the cotangent space

to a point s- x+JyE C is given by {dx,dy}. A complex basis for the cotangent

space is given by

• ... - . • . - . , / " , ; - . - . • . " . - ., - . ". - . . - .
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{dsindx +jdy, dsidx -jdy}I

The dual basis for the tangent space is given by (62, p. 2]

+ A

Let g(s) -g(x,y) and h(s) -h(x,y) be C. in (x,y). Then f(s) -g(s) + jh(s)

is analytic iff f - 0, wherer a5S
af 1 af af1
as Y1 ax + j y-

2 _ "' 3L + j*+3] .(1.6)

Thus the condition 7- 0 is equivalent to the Cauchy-Riemnn

equations being satisfied. Note also that Lemas 1.2 and 1.3 imply

is conjugate symmetric. Finally, note that

dsAds - 2j dxAdy .(1.7)

It will be convenient to have an expression for the basis (1.5) in terms of

*polar coordinates on the closed right half plane. Let ja be a point on the

w i-axis. Then a polar coordinate system is given by

s Ja + rei rE[0,)

ctE [-ir/2,wr/21 (1.8)

Thus,

dsine (dr+ Jr d) (I.9a)
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ds = e- '(dr - jr da) (I.9b)

e-(jr a (I.l0a) -
as jz r 13)

eJL(L+ j (I.l10b)

and

dsAds - 2 jr drAda (1.11)

In polar coordinates, (1.6) is given by

3f 1 ejac ' + a
f
)

ae r ra

1 ja (& + j '-

1 e I 3h al +h r A) (1.12)

Proof of Theorem 12.2: Consider the closed curve, C(R,E), traversed counter-

clockwise, pictured in Figure I.1. Denote the interior of C(R,E) by D(R,e),

the large semicircle by CR, the small semicircle by C , and let C1 and C2 be

as pictured in Figure I.i. Let D(R,E) have the orientation given by the

2
standard basis for the tangent space to points in IR. Then Stokes' Theorem

[49, p. 124] shows that, letting f(s) = logo(s) + je(s),

f(s) ds (.- f 13 -'"
s- (-)dsAds 13

C(R,e) s-jw D(R,E) s-jw

The proof will be broken into several steps.

Step 1: Take the limit as E -0 in (1.13). First, consider the curve C

parameterized by s(t) - JW + £ej(/2 - t), 0 < t < 1. Then

ds e e (-JT)dt and continuity implies

S-*.... -V,---. -, -- ,.-- .--.,. ,*,,..
' ' '

' " " "" " " "" ' " " "-- , " '' ' '- " ' t ' " " • " " "" '
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jy

CC

Figure 1.1. The curve C(R,e).
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lir f ds j f f(jw + eeJ( /2-Tt))dt
e4'O C s-JW 0

- f f Qr (J ) (1.14)

Thus,

f ds lim f f(S) ds
C(R,0) s-J W-*O C(R,e) s-jW

7-- jr f(jW) + f L4 ds
R s-j

W+C -R
+ lir [f f(jy) ._+ f f(jy) . (1.15)i'i +  €+O R Y-W -

e-0) R C

-R
Define f f(jy) t by the limit in (1.15), provided this limit exists and is -

-iR
finite. The fact that the limit indeed exists and is finite will be proven

by showing that lim of the right hand side of (1.13) exists and is finite.
C-NJ

First, define a polar coordinate system on the closed right half

plane by

s x+jy

- Jw + reja rE [0,-)

"+ acz [-,Tr/2,1I/2] -'

Then,

_ " _ (--)dsAds
4D(R,E) Sj

2j (e-)drd (1.16)

af-jct)rd

D(R,e) "

. o. . - . .
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,.

Since the integrand of (1.16) is independent of e, it follows that
_ f A f.

- (e-J)drAda lim f (e-Ja)drAda

D(RO) £40 D(R,c)

exists and is finite. Thus the limit in (1.15) has these properties.

Rearranging yields

f(jw) - f((s)(-)ds + L f f(jy) dX.=
CR7 s-jw j r -'C R

+ - 1 dsAds (1.17)
D(R,O)

Similarly, it may be shown that

f (-jw) f A L+lW +CR 
TR

+ J - (-)dsAds (1.18)
D(R,O)

Thus subtracting (1.18) from (1.17) yields

2j[(jw) -6(0)] f f (s) Ids
j Tr s-jw s+jw

-R

f 
..,

fN1'3f

--

,.' ., "'.-, . -' - ' . , 7T- D(, ) . . . " -j as ,'s " " ' ' -", - ,-% ",% -" ,",', '-'''
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or

6(jW) 6 (0) -- f f(s) 1- - d
Zi R <~j

f f Rf() 1y27r R Y-

1 f 1 af 1
D(RO)~ ~ 2dsAds + f -()I ~ d
27r (RO 39 -jWD(R,0) w 5+jw

(1.19)

Step 2: Show that conjugate symmetry implies

-L f f 1 1 f 1 -~= (---)s~d~+ .~ j (----)dsAds
2wD(R,0) D(R,O) -,j

= Re[f a (-)dsAd~j . (1.20)
D(R,0) si

Define the notation

Sa f 1L f (-:(-)dsAds (I.21a)
D(R,O) sJ

A 3f 1 -
R -f 7I (--)dsAds (I.21b)

D(R,0) sijw

and a polar coordinate system

s.Jw + re rE[0-

Then dsAds -- 2jr drAda and - e. Thus-jcW r

L--2j f -e drAda .(1.22)

D(R,O)
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Assume (with no loss of generality) that R>w. Then CR implicitly defii.es r

as a function of a via the equation

' 2 + y2 . R2

(rPcosra)os + (w + r sin a)2  R 2

r2 + r(2w sin a) + w 2 _ R2 - 0

rin- -sin + -w cos a

_F(a) (1.23)

U Thus,

, r/2 F(a),. L -2Jf f f -ja
L-2J f f e drAda (1.24)

-wr/2 0

Similarly, define a coordinate system by s--Jw + e 8  pE (O,),

8E (-Tr/2,ir/2] and define G(8) _ w sin B +

It follows that

/2 G(8) a (.5
R -2-f e d(d8 (1.25)

-T/2 0

Conjugate symmetry implies that

('j) s iej8 -(";) "-"j8

s-pe s=Pe-j 8

Then
S/2 G(8) dpd (1.26)

' -r/2 0 I s~o=R--2jf Is-pe-j

- Define a new variable of integration y - 8. Then (1.26) reduces to

".% %
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R - /2 G(-y) f f dp(-dy)
S/2 0' -i s-' pej  :

Noting

G(-) w sin(-y) - os y

'-F(y)

it follows that

i /2 fF(y) a -
R - - 2j f - dpdy . (1.27)

- /2 0 6"

Equations (1.24) and (1.27) show that L - - R (since a and y are merely

dummy variables of integration). Thus the left hand side of (1.20) reduces to

L + -R - [L - R]

S_ _[L + L]
2Tr

=- - t-

which, using (I.21a), proves (1.20).

From (1.12) and (1.22)

2ja -"aloga 1 a[ 36 J aloga+ -]eja drAda

ej f ~ er + + )'IF
D(R,O)

ae 1 3loRG) alosa _1 aeSI [(t +- aa - --r ra)]drAda
D(RO)

Thus,

Re[L] f - 1 logo drAda (1.28)

7-Re(L r-r aa
D(R,O)

,.-.,
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Using (1.28) in (1.19) yields

8(j W) -8(0) - f f(s) Ids- s"
2vC s..jw - -Id

R1 R
-R

2r y-W Y+W

_ ae 1 alozc,1fO 1 r_. )drAda  (1.29)
7rD(R,O) t r a

Step 3: Show that the following limits exist and are finite:

A lim f(s) ds

R 2w C f s -jw s+jw

-R 1 "1

B-urf f~jy) I- -]dy
R-* R y-W y+W

First consider

A- lira - f f(s) 21Wds -

R - CR s2+w 2

Define polar coordinates s Re , RI [0,), aE [-ir/2,w/2]. Then,

r/2 f Reja-
t.- A -~ ir -w/ f f(Ria) R2e2ja -2 Jjda

Jilm -" f(Re -f]2Ida ".._
uR R -rT/2 fR2e 2 a + ]w

R~e~j•I..g

0' Define

M(R) sup If (Re ) [R e I
aE [-Tr/2,Tr/2] R2e2 a +

sup f(ReJ)I 2

a c-6 [-ir/2,i/2] R -W

.........................................................

............................................
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where R>w is assumed with no loss of generality. From Leumma 12.1 it follows

that as R-- log a approaches infinity no faster than log R and 6 remains

bounded. Thus M(R)-)0- as R-)-. A standard argument may then be used to show

that A-O.

Next, consider

-R
Bmim -1 2w

2Ir f f (jy) 2 2 dy
RR y -W

R1
lim ~f f(jy) 21 dy
R -- cT -R y 2-W2

Ani argument similar to the one used to show A- 0 may be used to show

B- f f~y 1 d
7r 2jy 2 y .

Conjugate symetry implies E
B 1-w f logTr( 12. 2)dy

0 y -W

Define

36 1 alog ) drAda li 3 6 + 1 'loga)dr\d

CRH R *D (R,O) ~

where the existence and finiteness of the limit follows from (1.29) and the

fact that A and B exist and are finite. Thus, (1.29) reduces to

8(j) 6o) w flog J. 1 d
* .8(j) -G(OTr 2 2)d

f+ 1 3iOga )drAdt .1.30)

CRHP r 3
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An argument identical to one used by Bode may be applied to the first integral

in (1.30) to show

e~j) 10 d log, (j W) {lg ot 1'dv6(w)-IT) dv lo cth 2

lf =-- + - drgd
3r r act d~d

where

v =log (y/W)

The fact that

Le.1 alga H ~v H u
13Lr r act] v r-

yields the result. (Note in the statement of the theorem that wi is replaced

by w and y is replaced by w.
0U
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